THREE THEOREMS OF SIERPINSKI AND THEIR UNITARY ANALOGUES

V. Sitaramaiah
Department of Mathematics
Pondicherry Engineering College
Pondicherry 605014
India
sitaramaiah@vsnl.net

M.V. Subbarao*
Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
m.v.subbarao@ualberta.ca

May 8, 2003

Abstract

In 1963, Sierpinski proved that (a) $\sigma(n)$ is a power of 2 if and only if n is a product of distinct Mersenne primes (b) $\varphi(n)$ is a power of 2 if and only if n is a product of distinct Fermat primes (c) $\sigma(n)$ is a power of 3 only when n=1 or 2. In this paper we show that similar theorems are valid for their unitary analogues $\sigma^*(n)$ and $\varphi^*(n)$.

1 The Sierpinski Theorems

In 1963, Sierpinski [3] proved the following:

^{*}Supported in part by an NSERC Grant AMS (1991) Subject Classification: 11A25 Key words and phrases: $\sigma(n)$, $\varphi(n)$, $\sigma^*(n)$, $\varphi^*(n)$, Mersenne and Fermat primes

- **1.1. Theorem A.** There exist infinitely many integers n such that $\sigma(n)$ is a power of 2 if and only if there exist infinitely many Mersenne primes; $\sigma(n)$ is a power of 2 if and only if n is a product of distinct Mersenne primes.
- **1.2. Theorem B.** There exist infinitely many odd numbers n such that $\varphi(n)$ is a power of 2 if and only if there exist infinitely many Fermat primes; $\varphi(n)$ is a power of 2 if and only if n is a product of distinct Fermat primes.
- **1.3. Theorem C** (Schinzel). $\sigma(n)$ is equal to a power of 3 only when n=1 or 2.

Here $\sigma(n)$ denotes the sum of the divisors of n and $\varphi(n)$ is the Euler totient.

One might raise the question: are there similar theorems valid for their unitary analogues $\sigma^*(n)$ and $\varphi^*(n)$? We prove in this paper that there are indeed equally elegant analogues. At the end of the paper, we consider the interesting equation $\varphi^*(\varphi^*(n)) = n-2$ and show it has an infinity of solutions if and only if there exist infinitely many Fermat primes or infinitely many Mersenne primes.

Here $\sigma^*(n)$ denotes the sum of the unitary divisors of n and $\varphi^*(n)$ is the unitary totient function with the evaluations (see [1]):

$$\sigma^*(n) = \underset{p^a \parallel n}{\longrightarrow} \prod (p^a + 1); \quad \varphi^*(n) = \underset{p^a \parallel n}{\longrightarrow} \prod (p^a - 1).$$

Throughout p, p_1, \ldots, p_r represent primes.

2 The Analogous Theorems

Theorem A*. $\sigma^*(n)$ equals a power of 2 if and only if n is a product of distinct Mersenne primes.

Theorem B*. $\varphi^*(n)$ is a power of 2 if and only if n is a product of distinct Fermat primes, with the exception that if the Fermat prime 3 occurs as a factor, then it may occur to the first or second power.

Theorem C*. $\sigma^*(n)$ is a power of 3 only for n = 1, 2 and 8.

We also establish

Theorem D*. The only solutions of the equation $\varphi^*(\varphi^*(n)) = n-2$ are given by n = 9 or n is a Fermat prime or n-1 is a Mersenne prime.

Theorem E*. The only solutions of the equation $\sigma^*(\sigma^*(n)) = n+2$ are given by n=8 or n is a Mersenne prime or n+1 is a Fermat prime.

3 Some Lemmas

3.1. Lemma. Let a > 1 and odd. If $2^x || a^{\alpha} + 1$, where α is odd, then $2^x || a^d + 1$ for every divisor d of α . (Here $2^x || N$ means that $2^x || N$ and $2^{x+1} || N$).

Proof: We can assume that $\alpha > 1$ and $1 \le d < \alpha$. Let $a^{\alpha} + 1 = 2^{x}u$, where $x \ge 1$ and u odd. Since α is odd and $d|\alpha$, $a^{d} + 1|a^{\alpha} + 1$. Hence we can write $a^{d} + 1 = 2^{x_{1}}t$, where $x_{1} \ge 1$, t odd and t|u. Let $r = \alpha/d$ so that $r \ge 3$ and r odd. We have

$$a^{\alpha} = (a^d)^r = (2^{x_1}t - 1)^r = -1 + \sum_{k=1}^r \binom{r}{k} (-r)^{r-k} 2^{x_1k} t^k$$

so that

$$a^{\alpha} + 1 = 2^{x_1} \left\{ rt + \sum_{k=2}^{r} {r \choose k} (-1)^{r-k} 2^{x_1(k-1)} t^k \right\} = 2^{x_1}.$$

m, m odd, since r and t are odd. Hence $x_1 = x$ so that $2^x || a^d + 1$.

Corollary. If a is odd and > 1, then $a^{\alpha} + 1 = 2^{x}$ implies that $\alpha = 1$.

Proof: Suppose $\alpha > 1$. If α is odd, by Lemma 3.1, $a+1=2^x$, which is not possible. It α is even, since $y^2 \equiv 1 \pmod{4}$, when y is odd, we have

$$2^x = a^{\alpha} + 1 = (a^{\alpha/2})^2 + 1 \equiv 2 \pmod{4},$$

which is not possible since $x \ge 2$. Hence $\alpha = 1$.

3.2. Lemma. If p is an odd prime, α and β are positive integers with $\beta \geq 2$, then $2^{\alpha} + 1 = p^{\beta}$, p prime, if and only if p = 3, $\alpha = 3$ and $\beta = 2$.

Proof: Let $\beta \geq 2$ and $2^{\alpha} + 1 = p^{\beta}$. Then

$$2^{\alpha} = p^{\beta} - 1 = (p-1)(1 + p + p^{2} + \dots + p^{\beta-1})$$
$$= (p-1)\sigma(p^{\beta-1}),$$

so that $\sigma(p\beta-1)=2^a$ for some positive integer a. By Sierpinski's result (Theorem A above), we get $\beta=2$, so that $p=2^a-1$, a Mersenne

prime. Hence $2^{\alpha}+1=p^{\beta}=p^2=(2^a-1)^2=2^{2a}-2^{a+1}+1$, giving $2^{\alpha-a-1}=2^{a-1}-1$. This implies that a=2 and $\alpha=3$, which yields p=3, thus establishing the lemma.

4 Proofs of the Theorems

Proof of Theorem A*. Say $n = p_1^{a_1} \dots p_r^{a_r}$, so that

$$\sigma^*(n) = (p_1^{a_1} + 1) \dots (p_r^{a_r} + 1).$$

Suppose that $\sigma^*(n) = 2^b$, $b \ge 1$. It follows that p_i is odd and $p_i^{a_i} + 1$ is a power of 2 for each i = 1, 2, ..., r. By Corollary to Lemma 3.1, $a_i = 1$, for i = 1, 2, ..., r. This proves Theorem A*.

Proof of Theorem B*. Let $n = p_1^{a_1} \dots p_r^{a_r}$. Then $\varphi^*(n) = (p_1^{a_1} - 1) \dots (p_r^{a_r} - 1)$ and this is a power of 2 if and only if each factor on the right is a power of 2. This implies that p_1, \dots, p_r are odd. For an odd prime p, suppose that $p^a - 1 = 2^b$, $a \ge 1$, $b \ge 1$, so that $p^a = 2^b + 1$. If a = 1, then p is a Fermat prime. If a > 1, then by Lemma 3.2 we must have p = 3, a = 2 and b = 3.

Theorem B* now follows.

Proof of Theorem C*. If $n = p_1^{a_1} \dots p_r^{a_r}$ and if $\sigma^*(n) = (p_1^{a_1} + 1) \dots (p_r^{a_r} + 1) = 3^b$, then no p_i is odd. For $p_1 = 2$, Lemma 3.2 shows that the equation $2^{a_1} + 1 = 3^b$ is possible only when $b_1 = 1$, $a_1 = 1$ or $b_1 = 2$, $a_1 = 3$.

This proves Theorem C*.

Proof of Theorem D*. Let $n=2^{\alpha}$ be a solution so that $2^{\alpha}-2=\varphi^*(\varphi^*(2^{\alpha}))=\varphi^*(2^{\alpha}-1)$. Thus $\varphi^*(m)=m-1$ where $m=2^{\alpha}-1$, so that $m=p^{\beta}$ for some odd prime p and a positive integer β . Now Corollary to Lemma 3.1 implies that $\beta=1$ and hence n-1 is a Mersenne prime. We may note that $\varphi^*(m)$ is odd if and only if $m=2^{\alpha}$ for some $\alpha\geq 0$. If n is an odd solution, since $\varphi^*(\varphi^*(n))$ must be odd in that case, we must have that $\varphi^*(n)=2^{\alpha}$ for some $\alpha\geq 1$. Hence $n-2=\varphi^*(\varphi^*(n))=\varphi^*(2^{\alpha})=2^{\alpha}-1$ so that $n=2^{\alpha}+1$. Thus $2^{\alpha}=\varphi^*(n)=\varphi^*(2^{\alpha}+1)$ and hence $2^{\alpha}+1=p^{\beta}$ for some odd prime p and a positive integer p. If p=1, p=1 is a Fermat prime. If p=1, p=1 is a solution where p=1 is odd, we obtain p=1 is a solution. Let p=1 is a solution. Let p=1 is odd, where p=1 is odd, be a solution. Let p=1 is p=1 in p=1 is odd, be a solution. Let p=1 is p=1 is odd, here p=1 is odd, be a solution. Let p=1 is p=1 in p=1 is odd, here p=1 is odd, be a solution. Let p=1 is p=1 in p=1 is odd, here p=1 is odd, here

where $a \ge 1$ and q_1, \ldots, q_k are distinct odd primes. From the equation $n-2 = \varphi^*(\varphi^*(n))$, we obtain

$$2(2^{\alpha-1}u-1) = (2^a-1)(q^{\beta_1}-1)\dots(q_k^{\beta_k}-1). \tag{1}$$

Since $\alpha \geq 2$, the left hand side of (1) is of the form 2m where m is odd. Since 2^k is a factor of the right hand side of (1), it follows that k = 1. Denoting q_1 by q and β_1 by β , we have the equations

$$(2^{\alpha} - 1)\varphi^*(u) = 2^a q^b \tag{2}$$

and

$$(2^{a} - 1)(q^{\beta} - 1) = 2^{\alpha}u - 2. \tag{3}$$

From (2), $2^{\alpha} - 1|q^{\beta}$ so that $2^{\alpha} - 1 = q^{\gamma}$ for some $\gamma \geq 1$. Lemma 3.1 implies that $\gamma = 1$, so that $2^{\alpha} - 1 = q$. Using in (3) and (2), we obtain

$$(q+1)u - 2 = 2^{\alpha}u - 2$$

= $(2^{a} - 1)(q^{\beta} - 1)$
< $2^{a}q^{\beta}$
= $(2^{\alpha} - 1)\varphi^{*}(u)$
= $q\varphi^{*}(u)$
< qu ,

a contradiction.

We can similarly prove Theorem E^* .

5 Some Remarks

The problem when $\sigma(n)$ or $\varphi(n)$ is a power of a prime is, in general, a difficult one to settle. For example, from a deep result of [2], it follows that $\sigma(p^k)$ is a square only for k=4, p=7 and k=5, p=3. In a later paper we shall examine these and other problems in detail.

The latest available information on the internet shows that there are now thirty-nine known Mersenne primes, the last one being $2^{13466917} - 1$, with 4053946 digits. It was discovered by a young Canadian, aged twenty, by the name of Michael Cameron on November 14, 2001.

As for Fermat primes, only five are known, namely F_0, F_1, F_2, F_3, F_4 , where $F_n = 2^{2^n} + 1$.

References

- [1] Eckford Cohen, Arithmetic functions associated with the unitary divisors of an integer *Math. Z.* **34** (1960), 66-80.
- [2] W. Ljunggren, Noen setringer om ubestmete likninger av formen $(x^n-1)/(x-1)=y^q$. Norsk. Tids **25** (1943), 17-29, MR39#5463.
- [3] W. Sierpinski, Sur les nombres dont la somme de diviseurs est une puissance du nombra 2, Calcutta Math. Soc. Golden Jubilee Commemoration (1758-59), Part I, pp. 7-9, Calcutta Math. Soc., Calcutta 1963, MR A30-24 32#5584.