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Abstract

In 1963, Sierpinski proved that (a) o(n) is a power of 2 if and
only if n is a product of distinct Mersenne primes (b) @(n) isa
power of 2 if and only if n is a product of distinct Fermat primes
(¢) o(n) is a power of 3 only when n = 1 or 2. In this paper
we show that similar theorems are valid for their unitary analogues
o*(n) and ¢"(n).

1 The Sierpinski Theorems

In 1963, Sierpinski [3] proved the following:

*Supported in part by an NSERC Grant
AMS (1991) Subject Classification: 11A25
Key words and phrases: o(n),¢(n),o”(n), ¢*(n), Mersenne and Fermat primes

Bulletin of the ICA, Volume 42 (2004), 81-86



1.1. Theorem A. There exist infinitely many integers n such that o(n)
is a power of 2 if and only if there exist infinitely many Mersenne primes;
o(n) 1is a power of 2 if and only if n is a product of distinct Mersenne
primes.

1.2. Theorem B. There ezist infinitely many odd numbers n such that
p(n) is a power of 2 if and only if there exist infinitely many Fermat
primes; p(n) 1is a power of 2 if and only if n is a product of distinct
Fermat primes.

1.3. Theorem C (Schinzel). o(n) is equal to a power of 3 only when
n=1 or 2.

Here o(n) denotes the sum of the divisors of n and ¢(n) is the
Euler totient.

One might raise the question: are there similar theorems valid for
their unitary analogues o*(n) and ¢*(n)? We prove in this paper that
there are indeed equally elegant analogues. At the end of the paper, we
consider the interesting equation ¢*(p*(n)) = n — 2 and show it has an
infinity of solutions if and only if there exist infinitely many Fermat primes
or infinitely many Mersenne primes.

Here o*(n) denotes the sum of the unitary divisors of n and ¢*(n)
is the unitary totient function with the evaluations (see [1]):

o*(n)=— |](@*+1); ¢*(n)=— |]0"-1).
p*ln p*lin

Throughout p, p1,...,pr represent primes.

2 The Analogous Theorems

Theorem A*. o¢*(n) equals a power of 2 if and only if n is a product
of distinct Mersenne primes.

Theorem B*. ¢*(n) is a power of 2 if and only if n is a product
of distinct Fermat primes, with the exception that if the Fermat prime 3
occurs as a factor, then it may occur to the first or second power.

Theorem C*. o*(n) is a power of 3 only for n=1,2 and 8.
We also establish

Theorem D*. The only solutions of the equation ¢*(p*(n)) =n—2 are
giwen by n=19 or n is a Fermat prime or n— 1 is a Mersenne prime.
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Theorem E*. The only solutions of the equation o*(o*(n)) =n+2 are
given by n =8 or n is a Mersenne prime or n+ 1 is a Fermat prime.

3 Some Lemmas

3.1. Lemma. Let a > 1 and odd. If 2*|[a®* + 1, where « is odd, then
2%||la® + 1 for every divisor d of a. (Here 2%|N means that 2°|N and
9z+1 /N).

Proof: We can assume that @« > 1 and 1 <d < a. Let a® + 1 = 2%u,
where 2 > 1 and u odd. Since a isodd and dla, a%+ 1|a®+1. Hence
we can write a%+1 = 2%'¢t, where z; > 1, t odd and tlu. Let r =a/d
so that r >3 and r odd. We have

r
a® = (ad)f‘ = (2%t — l)r oy [ Z (’:) (_,’,)r—k2zlktk
R=1
so that
i
a Ty T\ (_q1yr—kozi(k=1)4k | _ oz
a®+1=2 {rt+kz_:2<k>(l) 2 t} 971

m, m odd, since 7 and t are odd. Hence z; = x so that 2%|ja% + 1.
Corollary. If a is odd and > 1, then a®*+1 = 2" implies that a = 1.

Proof: Suppose a > 1. If a is odd, by Lemma 3.1, a + 1 = 2%, which
is not possible. It a is even, since y? = 1(mod 4), when y is odd, we

have
2% = g% +1 = (a®/?)? + 1 = 2(mod 4),

which is not possible since z > 2. Hence a = 1.

3.2. Lemma. If p is an odd prime, a and 3 are positive integers with
B > 2, then 2° +1 = pP, p prime, if and only if p = 3, o = 3 and
B=2.

Proof: Let 3>2 and 2% +1 = p®. Then
22=p-1=(p-1)(1+p+p*+---+p*7)
= (p—a(p’),

so that o(pf — 1) =22 for some positive integer a. By Sierpinski’s result
(Theorem A above), we get 3 = 2, so that p = 2% — 1, a Mersenne



prime. Hence 2% +1 = p? = p? = (29 —1)2 = 226 _ 20+1 | |  giving
20-a=1 — 2a=1 _ 1 This implies that a = 2 and a = 3, which yields
p = 3, thus establishing the lemma.

4 Proofs of the Theorems

Proof of Theorem A*. Say n = p{'...p%, so that
ot (n) = (B +1)... (o +1).

Suppose that o*(n) = 2% b > 1. It follows that p; is odd and pf* +1 is
a power of 2 foreach i=1,2,...,r. By Corollary to Lemma 3.1, a; =1,
for 1=1,2,...,r. This proves Theorem A*.

Proof of Theorem B*. Let n = p{'...p% . Then ¢*(n) = (pi' —
1)...(p% — 1) and this is a power of 2 if and only if each factor on the
right is a power of 2. This implies that p;,...,p, are odd. For an odd
prime p, suppose that p®* —1=2% a>1, b>1, sothat p* =2°41. If
a=1, then p is a Fermat prime. If a > 1, then by Lemma 3.2 we must
have p=3, a=2 and b= 3.

Theorem B* now follows.

Proof of Theorem C*. If n = p{'...p% and if o*(n) = (pi* +
1)...(p% + 1) = 3%, then no p; is odd. For p; = 2, Lemma 3.2 shows
that the equation 2% +1 = 3t s possible only when b; =1, a; =1 or
b1 = 2, a) = 3.

This proves Theorem C*.

Proof of Theorem D*. Let n = 2* be a solution so that 2% — 2 =
¢* (¢*(2%)) = ¢*(2*—1). Thus ¢*(m) = m—1 where m = 2%—1, so that
m = p? for some odd prime p and a positive integer 3. Now Corollary
to Lemma 3.1 implies that 8 =1 and hence n — 1 is a Mersenne prime.
We may note that ¢*(m) is odd if and only if m = 2% for some a > 0.
If n is an odd solution, since ¢*(y*(n)) must be odd in that case, we
must have that ¢*(n) =2 for some a > 1. Hence n—2 = ¢*(p*(n)) =
©*(2%) = 2* — 1 so that n = 2* + 1. Thus 2% = p*(n) = p*(2* + 1)
and hence 2% + 1 = p? for some odd prime p and a positive integer /.
If =1, n=2%+1 is a Fermat prime. If 8 > 2, Lemma 3.2 implies
that p=3, a=3 and =2, sothat n=2*+1=9. If n=2u isa
solution where u > 1 is odd, we obtain 2u —2 =n — 2 = ¢*(¢*(n)) =
¢* (¢*(2u)) = ¢*(¢*(u)) < u—2, a contradiction. Let n = 2%u, where
a > 2 and u > 1 is odd, be a solution. Let ¢*(n) = 2"q{a1 ...q,‘z",



where a > 1 and ¢,...,qx are distinct odd primes. From the equation
n—2=¢*(p*(n)), we obtain

2207w —1) = (2~ 1)(¢" - 1)...(¢{* — 1). ()

Since a > 2, the left hand side of (1) is of the form 2m where m is odd.
Since 2* is a factor of the right hand side of (1), it follows that k = 1.
Denoting ¢q; by q and [; by [, we have the equations

(2% — 1)p"(u) = 2°¢° (2)

and
(2%~ 1)(g7 —~1)=2% ~2. (3)

From (2), 2% — 1|¢° so that 2* — 1 = ¢” for some 7 > 1. Lemma 3.1
implies that v =1, so that 2* —1 =g¢. Using in (3) and (2), we obtain

(g+1u—-2=2% -2
=(2°-1)(¢° - 1)
< 2%
= (2% - 1)¢"(u)
= qp*(u)
< qu,

a contradiction.
We can similarly prove Theorem E*.

5 Some Remarks

The problem when o(n) or ¢(n) is a power of a prime is, in general, a
difficult one to settle. For example, from a deep result of [2], it follows that
o(p*) is a square only for k =4, p=17 and k =5, p = 3. In a later
paper we shall examine these and other problems in detail.

The latest available information on the internet shows that there are
now thirty-nine known Mersenne primes, the last one being 213466917 _ 1
with 4053946 digits. It was discovered by a young Canadian, aged twenty,
by the name of Michael Cameron on November 14, 2001.

As for Fermat primes, only five are known, namely Fpy, Fy, Fy, F3, Fy,
where F, = 22" +1.
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