THREE THEOREMS OF SIERPINSKI AND THEIR UNITARY ANALOGUES

V. Sitaramaiah
Department of Mathematics
Pondicherry Engineering College
Pondicherry 605014
India
sitaramaiah@vsnl.net

M.V. Subbarao*
Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
m.v.subbarao@ualberta.ca

May 8, 2003

Abstract

In 1963, Sierpinski proved that (a) $\sigma(n)$ is a power of 2 if and only if n is a product of distinct Mersenne primes (b) $\varphi(n)$ is a power of 2 if and only if n is a product of distinct Fermat primes (c) $\sigma(n)$ is a power of 3 only when $n=1$ or 2 . In this paper we show that similar theorems are valid for their unitary analogues $\sigma^{*}(n)$ and $\varphi^{*}(n)$.

1 The Sierpinski Theorems

In 1963, Sierpinski [3] proved the following:

[^0]1.1. Theorem A. There exist infinitely many integers n such that $\sigma(n)$ is a power of 2 if and only if there exist infinitely many Mersenne primes; $\sigma(n)$ is a power of 2 if and only if n is a product of distinct Mersenne primes.
1.2. Theorem B. There exist infinitely many odd numbers n such that $\varphi(n)$ is a power of 2 if and only if there exist infinitely many Fermat primes; $\varphi(n)$ is a power of 2 if and only if n is a product of distinct Fermat primes.
1.3. Theorem C (Schinzel). $\sigma(n)$ is equal to a power of 3 only when $n=1$ or 2 .

Here $\sigma(n)$ denotes the sum of the divisors of n and $\varphi(n)$ is the Euler totient.

One might raise the question: are there similar theorems valid for their unitary analogues $\sigma^{*}(n)$ and $\varphi^{*}(n)$? We prove in this paper that there are indeed equally elegant analogues. At the end of the paper, we consider the interesting equation $\varphi^{*}\left(\varphi^{*}(n)\right)=n-2$ and show it has an infinity of solutions if and only if there exist infinitely many Fermat primes or infinitely many Mersenne primes.

Here $\sigma^{*}(n)$ denotes the sum of the unitary divisors of n and $\varphi^{*}(n)$ is the unitary totient function with the evaluations (see [1]):

$$
\sigma^{*}(n)=\underset{p^{*} \| n}{\rightarrow} \prod\left(p^{a}+1\right) ; \quad \varphi^{*}(n)=\underset{p^{*} \| n}{\rightarrow} \prod\left(p^{a}-1\right) .
$$

Throughout p, p_{1}, \ldots, p_{r} represent primes.

2 The Analogous Theorems

Theorem \mathbf{A}^{*}. $\quad \sigma^{*}(n)$ equals a power of 2 if and only if n is a product of distinct Mersenne primes.

Theorem $\mathbf{B}^{*} . \varphi^{*}(n)$ is a power of 2 if and only if n is a product of distinct Fermat primes, with the exception that if the Fermat prime 3 occurs as a factor, then it may occur to the first or second power.

Theorem $\mathbf{C}^{*} . \quad \sigma^{*}(n)$ is a power of 3 only for $n=1,2$ and 8.
We also establish
Theorem D* The only solutions of the equation $\varphi^{*}\left(\varphi^{*}(n)\right)=n-2$ are given by $n=9$ or n is a Fermat prime or $n-1$ is a Mersenne prime.

Theorem \mathbf{E}^{*}. The only solutions of the equation $\sigma^{*}\left(\sigma^{*}(n)\right)=n+2$ are given by $n=8$ or n is a Mersenne prime or $n+1$ is a Fermat prime.

3 Some Lemmas

3.1. Lemma. Let $a>1$ and odd. If $2^{x} \| a^{\alpha}+1$, where α is odd, then $2^{x} \| a^{d}+1$ for every divisor d of α. (Here $2^{x} \| N$ means that $2^{x} \mid N$ and $\left.2^{x+1} / N\right)$.

Proof: We can assume that $\alpha>1$ and $1 \leq d<\alpha$. Let $a^{\alpha}+1=2^{x} u$, where $x \geq 1$ and u odd. Since α is odd and $d\left|\alpha, \quad a^{d}+1\right| a^{\alpha}+1$. Hence we can write $a^{d}+1=2^{x_{1}} t$, where $x_{1} \geq 1, t$ odd and $t \mid u$. Let $r=\alpha / d$ so that $r \geq 3$ and r odd. We have

$$
a^{\alpha}=\left(a^{d}\right)^{r}=\left(2^{x_{1}} t-1\right)^{r}=-1+\sum_{k=1}^{r}\binom{r}{k}(-r)^{r-k} 2^{x_{1} k} t^{k}
$$

so that

$$
a^{\alpha}+1=2^{x_{1}}\left\{r t+\sum_{k=2}^{r}\binom{r}{k}(-1)^{r-k} 2^{x_{1}(k-1)} t^{k}\right\}=2^{x_{1}}
$$

$m, \quad m$ odd, since r and t are odd. Hence $x_{1}=x$ so that $2^{x} \| a^{d}+1$.
Corollary. If a is odd and >1, then $a^{\alpha}+1=2^{x}$ implies that $\alpha=1$.
Proof: Suppose $\alpha>1$. If α is odd, by Lemma 3.1, $a+1=2^{x}$, which is not possible. It α is even, since $y^{2} \equiv 1(\bmod 4)$, when y is odd, we have

$$
2^{x}=a^{\alpha}+1=\left(a^{\alpha / 2}\right)^{2}+1 \equiv 2(\bmod 4),
$$

which is not possible since $x \geq 2$. Hence $\alpha=1$.
3.2. Lemma. If p is an odd prime, α and β are positive integers with $\beta \geq 2$, then $2^{\alpha}+1=p^{\beta}, p$ prime, if and only if $p=3, \alpha=3$ and $\beta=2$.

Proof: Let $\beta \geq 2$ and $2^{\alpha}+1=p^{\beta}$. Then

$$
\begin{aligned}
2^{\alpha}=p^{\beta}-1 & =(p-1)\left(1+p+p^{2}+\cdots+p^{\beta-1}\right) \\
& =(p-1) \sigma\left(p^{\beta-1}\right),
\end{aligned}
$$

so that $\sigma(p \beta-1)=2^{a}$ for some positive integer a. By Sierpinski's result (Theorem A above), we get $\beta=2$, so that $p=2^{a}-1$, a Mersenne
prime. Hence $2^{\alpha}+1=p^{\beta}=p^{2}=\left(2^{a}-1\right)^{2}=2^{2 a}-2^{a+1}+1$, giving $2^{\alpha-a-1}=2^{a-1}-1$. This implies that $a=2$ and $\alpha=3$, which yields $p=3$, thus establishing the lemma.

4 Proofs of the Theorems

Proof of Theorem \mathbf{A}^{*}. Say $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, so that

$$
\sigma^{*}(n)=\left(p_{1}^{a_{1}}+1\right) \ldots\left(p_{r}^{a_{r}}+1\right) .
$$

Suppose that $\sigma^{*}(n)=2^{b}, b \geq 1$. It follows that p_{i} is odd and $p_{i}^{a_{i}}+1$ is a power of 2 for each $i=1,2, \ldots, r$. By Corollary to Lemma 3.1, $a_{i}=1$, for $i=1,2, \ldots, r$. This proves Theorem A^{*}.

Proof of Theorem \mathbf{B}^{*}. Let $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$. Then $\varphi^{*}(n)=\left(p_{1}^{a_{1}}-\right.$ 1) $\ldots\left(p_{r}^{a_{r}}-1\right)$ and this is a power of 2 if and only if each factor on the right is a power of 2 . This implies that p_{1}, \ldots, p_{r} are odd. For an odd prime p, suppose that $p^{a}-1=2^{b}, a \geq 1, b \geq 1$, so that $p^{a}=2^{b}+1$. If $a=1$, then p is a Fermat prime. If $a>1$, then by Lemma 3.2 we must have $p=3, a=2$ and $b=3$.

Theorem B* now follows.
Proof of Theorem \mathbf{C}^{*}. If $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$ and if $\sigma^{*}(n)=\left(p_{1}^{a_{1}}+\right.$ 1) $\ldots\left(p_{r}^{a_{r}}+1\right)=3^{b}$, then no p_{i} is odd. For $p_{1}=2$, Lemma 3.2 shows that the equation $2^{a_{1}}+1=3^{b}$ is possible only when $b_{1}=1, a_{1}=1$ or $b_{1}=2, a_{1}=3$.

This proves Theorem C^{*}.
Proof of Theorem \mathbf{D}^{*}. Let $n=2^{\alpha}$ be a solution so that $2^{\alpha}-2=$ $\varphi^{*}\left(\varphi^{*}\left(2^{\alpha}\right)\right)=\varphi^{*}\left(2^{\alpha}-1\right)$. Thus $\varphi^{*}(m)=m-1$ where $m=2^{\alpha}-1$, so that $m=p^{\beta}$ for some odd prime p and a positive integer β. Now Corollary to Lemma 3.1 implies that $\beta=1$ and hence $n-1$ is a Mersenne prime. We may note that $\varphi^{*}(m)$ is odd if and only if $m=2^{\alpha}$ for some $\alpha \geq 0$. If n is an odd solution, since $\varphi^{*}\left(\varphi^{*}(n)\right)$ must be odd in that case, we must have that $\varphi^{*}(n)=2^{\alpha}$ for some $\alpha \geq 1$. Hence $n-2=\varphi^{*}\left(\varphi^{*}(n)\right)=$ $\varphi^{*}\left(2^{\alpha}\right)=2^{\alpha}-1$ so that $n=2^{\alpha}+1$. Thus $2^{\alpha}=\varphi^{*}(n)=\varphi^{*}\left(2^{\alpha}+1\right)$ and hence $2^{\alpha}+1=p^{\beta}$ for some odd prime p and a positive integer β. If $\beta=1, n=2^{\alpha}+1$ is a Fermat prime. If $\beta \geq 2$, Lemma 3.2 implies that $p=3, \alpha=3$ and $\beta=2$, so that $n=2^{\alpha}+1=9$. If $n=2 u$ is a solution where $u>1$ is odd, we obtain $2 u-2=n-2=\varphi^{*}\left(\varphi^{*}(n)\right)=$ $\varphi^{*}\left(\varphi^{*}(2 u)\right)=\varphi^{*}\left(\varphi^{*}(u)\right) \leq u-2$, a contradiction. Let $n=2^{\alpha} u$, where $\alpha \geq 2$ and $u>1$ is odd, be a solution. Let $\varphi^{*}(n)=2^{a} q_{1}^{\beta_{1}} \ldots q_{k}^{\beta_{k}}$,
where $a \geq 1$ and q_{1}, \ldots, q_{k} are distinct odd primes. From the equation $n-2=\varphi^{*}\left(\varphi^{*}(n)\right)$, we obtain

$$
\begin{equation*}
2\left(2^{\alpha-1} u-1\right)=\left(2^{a}-1\right)\left(q^{\beta_{1}}-1\right) \ldots\left(q_{k}^{\beta_{k}}-1\right) \tag{1}
\end{equation*}
$$

Since $\alpha \geq 2$, the left hand side of (1) is of the form $2 m$ where m is odd. Since 2^{k} is a factor of the right hand side of (1), it follows that $k=1$. Denoting q_{1} by q and β_{1} by β, we have the equations

$$
\begin{equation*}
\left(2^{\alpha}-1\right) \varphi^{*}(u)=2^{a} q^{b} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(2^{a}-1\right)\left(q^{\beta}-1\right)=2^{\alpha} u-2 \tag{3}
\end{equation*}
$$

From (2), $2^{\alpha}-1 \mid q^{\beta}$ so that $2^{\alpha}-1=q^{\gamma}$ for some $\gamma \geq 1$. Lemma 3.1 implies that $\gamma=1$, so that $2^{\alpha}-1=q$. Using in (3) and (2), we obtain

$$
\begin{aligned}
(q+1) u-2 & =2^{\alpha} u-2 \\
& =\left(2^{a}-1\right)\left(q^{\beta}-1\right) \\
& <2^{a} q^{\beta} \\
& =\left(2^{\alpha}-1\right) \varphi^{*}(u) \\
& =q \varphi^{*}(u) \\
& <q u
\end{aligned}
$$

a contradiction.
We can similarly prove Theorem E^{*}.

5 Some Remarks

The problem when $\sigma(n)$ or $\varphi(n)$ is a power of a prime is, in general, a difficult one to settle. For example, from a deep result of [2], it follows that $\sigma\left(p^{k}\right)$ is a square only for $k=4, p=7$ and $k=5, p=3$. In a later paper we shall examine these and other problems in detail.

The latest available information on the internet shows that there are now thirty-nine known Mersenne primes, the last one being $2^{13466917}-1$, with 4053946 digits. It was discovered by a young Canadian, aged twenty, by the name of Michael Cameron on November 14, 2001.

As for Fermat primes, only five are known, namely $F_{0}, F_{1}, F_{2}, F_{3}, F_{4}$, where $F_{n}=2^{2^{n}}+1$.

References

[1] Eckford Cohen, Arithmetic functions associated with the unitary divisors of an integer Math. Z. 34 (1960), 66-80.
[2] W. Ljunggren, Noen setringer om ubestmete likninger av formen $\left(x^{n}-1\right) /(x-1)=y^{q}$. Norsk. Tids 25 (1943), 17-29, MR39\#5463.
[3] W. Sierpinski, Sur les nombres dont la somme de diviseurs est une puissance du nombra 2, Calcutta Math. Soc. Golden Jubilee Commemoration (1758-59), Part I, pp. 7-9, Calcutta Math. Soc., Calcutta 1963 , MR A30-24 32\#5584.

[^0]: *Supported in part by an NSERC Grant
 AMS (1991) Subject Classification: 11A25
 Key words and phrases: $\sigma(n), \varphi(n), \sigma^{*}(n), \varphi^{*}(n)$, Mersenne and Fermat primes

