
2-Colouring Doubly-Periodic Graphs 

Bruce L. Bauslaugh 
Department of Mathematics and Statistics, 

University of Calgary, 
Calgary Alberta, Canada 

Gary MacGillivray 
Department of Mathematics and Statistics, 

University of Victoria, 
Victoria B.C. , Canada 

October 20, 2004 

Abstract 

We give a polynomial-time algorithm for determining whether a 
doubly-periodic infinite graph is 2-colourable. This is a consequence 
of an upper bound established on the length of a shortest odd cycle. 

1 Introduction 

A doubly-periodic graph, or DP-graph, G is an infinite graph whose vertex­
set can be paritioned into sets ½i = { vti, ... v0}, i, j E Z, in such a way 
that 

l. a vertex in ½i is adjacent to vertices in Vpq only if Ii - Pl :::; 1 and 
Ii - qj :::; 1 and, 

2. if vt is adjacent to v;q, then vf+a,i+b is adjacent to v;+a,q+b for a ll 
integers a, b. 

In particular , the subgraphs induced by the sets ½,1 are pairwise iso­
morphic. Given such a partition, these subgraphs are called the cells of the 
DP-graph, and denoted Gii· Furthermore, for all i, j, p , and q; f( vfi) = v;q 
is an isomorphism from Gii to Gpq · We will say that vertices with the same 
superscript are of the same type. 

Intuitively, we think of the cells as being the cells of an infinite square 
grid, each containing a copy of some finite graph, with edges only within 
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cells or between neighbouring cells , and with the same pattern of adjacen­
cies between any pair cells which are adjacent in the same way (horizontally, 
vertically, or either of the two diagonal orientations) . 

Thus, we may define a DP-graph by describing a single cell G00 , and 
giving the neighbours in Go1, Gu, G10, and G1,-1 of each v~0 E Goo, 
Henceforth we will assume our DP-graphs are presented in this way, and 
the partition into cells is the natural one implied by the this presentation. 

The term doubly-periodic arises from the existence of a collection of 
isomorphisms Tab (a , b E Z) of G , defined by Tab(vfi) = vf+a,i+b for all 
integers i and j. Each Tab is simply a translation of the cells of G by a 
cells horizontally and b cells vertically. If v and w are two vertices with the 
same type, then there is a unique Tab which maps v tow. For convenience, 
we will denote this by tvw. 

We use x(v) (resp. y(v)) to indicate the unique i (resp. j) such that 
v E Gij, that is, the x or y coordinate of the cell containing v . 

If H is a subgraph of a DP-graph G, then the height of H is defined 
to be maxv,wEH{Jy(v) - y(w)J}, that is, the maximum vertical distance 
between cells that intersect with H . We define the width of H similarly. 

S. Burr proved that the problem of whether a pre-colouring of a finite 
number of vertices of a DP-graph F extends to a k-colouring of G is unde­
cidable for every fixed integer k 2: 3 [l] . He notes that this remains true 
even if G is planar and has maximum degree four. The proof is to trans­
form the Halting problem by constructing a DP-graph whose k-colourings 
model the computation of a universal Turing machine. The proof depends 
strongly on the pre-colouring, as it is how the initial settings of the machine 
are obtained. Burr's result was generalized to graph homomorphisms in [2], 
but the class of graphs considered needed to be enlarged slightly in order 
for the transformation to work. The transformation is from Burr's theo­
rem, and is accomplished by showing that standard tools from the study 
of the complexity of graph homomorphisms also work for the graphs being 
considered. 

In this paper we study the question of whether a DP-graph is 2-colourable. 
No vertices are pre-coloured. We show that this question is decidable in 
time polynomial in n , the number of vertices in each cell. In particular, 
we prove that if a DP-graph G has an odd cycle (i.e., is not 2-colourable), 
then there is an odd cycle contained in any 16n2 x 4n block of cells. Thus, 
it can be decided whether G is 2-colourable by examining a small, finite, 
subgraph. In the conclusion we briefly discuss the possibilty of proving 
such a result for k-colouring, k 2: 3, and examine colouring and homomor­
phism problems for singly-periodic graphs, which are defined similarly to 
DP-graphs. 
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2 2-colourability 

We prove the following result, which immediately yields a polynomial-time 
algorithm for determining 2-colourability of a DP-graph. 

Theorem 1 If a DP-graph G contains an odd cycle, then the subgraph of 
G induced by the cells Gii, 0 :S i < 16n2

, 0 :S j < 4n contains an odd cycle. 

Before proceeding with the proof, we note some simple properties of a 
DP-graph G with n vertices in each cell. 

Lemma 2 If there is a path from a vertex v to a vertex w in G, then there 
is a path of length less than n from v to a vertex with the same type as w . 

Proof: If P = (v = v0 , v1 , . .. , Vr = w) is a shortest path from v to w 
and r 2'. n, then P must contain two vertices of the same type, say Vi and 
Vj with i < j. Then Vo,v1, ... ,vi,tv;v.(vi+d,tv;vi(vi+2), ... ,tv;v,(vr) is a 
walk from v to a vertex with the same type as w that is shorter than P, 
and thus contains a such a path that is shorter than P, a contradiction. ■ 

This lemma allows us to find short paths from a given vertex to a given 
type of vertex in the same connected component. 

Lemma 3 If a connected component Hof a DP-graph G has height at least 
n, then H contains vertices v and wand a path P = (v = vo, Vt, ... , Vr = w) 
such that 

1. r :Sn, 

2. v and w are the same type, 

3. y(v) # y(w). 

Proof: Choose vertices v , w E H so that y(v) - y(w) 2'. n , and let Q be 
a path from v to w. Since Q has length at least n, as in the proof of 
Lemma 2 it must contain two vertices v' and w' of the same type such that 
y(v') # y(w') . Choose such v' and w' so that the length of a shortest path 
R from v' to w' is minimised. 

We claim that R , v', and w' have the properties required for P , v , and 
w. Properties (2) and (3) are satisfied by the choice of v' and w', so we 
need only verify that R has length less than or equal to n. 

Suppose this is not the case. Write R as v' = v0 , Vt, . .. , Vr = w'. The 
subpath vo, Vt, . . . , Vr-t must contain two vertices Vi and Vj (with i < j) of 
the same type. If y( Vi) # y( vi), then vi and vi satisfy the same properties 
as v' and w' , but have a shorter path between them, a contradiction. Oth­
erwise y(vi ) = y(vj) , but then vo,v1, .. . ,vi, tv;v, (Vj+1) , ... , tv_;v, (w') is a 
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path from v to a vertex of the same type as v which is shorter than R. Fur­
thermore, since y(vi) = y(vj), we know that y(tv;v,(w')) = y(w') =/- y(v'), 
and we again obtain a contradiction. ■ 

This implies that if a connected component Hof a DP-graph has height 
at least n, then there is a type of vertex in H and a constant O < c <= n so 
that from any vertex v of that type there is a short path from v to a vertex 
w with the same type and with y(v) - y(w) = c or - c, as desired . This 
is accomplished by simply applying an appropriate trarn;lation mapping to 
the path found in this lemma. 

We may now proceed to place an upper bound on the minimum height 
of an odd cycle in a DP-graph. The proof of this result is construc­
tive , so the following notation will be useful. If P = v0 , vi , ... , Vr and 
Q wo, wi , ... , W 8 are paths with Vr = wo, then P o Q is the walk 
P o Q = Vo, vi, ... , Vr, wi, ... , Ws , i.e. the concatenation of P and Q. We 
denote by pr the reverse of P, i.e. pr = Vr, Vr - i, ... , Vo. 

Lemma 4 If C is an odd cycle in a DP-graph G then G contains an odd 
cycle C' with height less than 4n. 

Proof: Let C be an odd cycle of minimum height in a DP-graph G. Sup­
pose C has height h that is greater than 4n, and suppose without loss of 
generality that C contains a vertex a with y(a) = 0 but no vertex a' with 
y(a') < 0. Then C contains at least one vertex b with y(b) = h but no 
vertex b' with y(b') > h. Let C also be chosen so that l{b: y(b) = h}I is 
minimised. We will obtain a contradiction by constructing an odd cycle 
with either smaller height or fewer such vertices. 

Let v be a vertex in C with y(v) = h. Write C as vo, vi, . . . , Vr, v0 , where 
y(vo) = 0. Now choose i and j so that Po= vi,Vi+1,···,vi is the short­
est path in C such that P0 contains v, and y(v;) = y(vj) = 2n. This implies 
that y(vk) > 2n for all i < k < j. Let Pi= Vj, Vj+i, .. . , Vr, vo , vi, ... , Vi-I, Vi, 
i.e. the part of C induced by the edges not in P. 

Since C has height greater than n, the connected component containing 
C contains a path Q = Qo, Qi, ... , Qr as described in Lemma 3. Assume 
without loss of generality that y(Qo) > y(Qr)-

Now, let P2 be a path of length less than n from v; to a vertex Qb with 
the same type as q0 , and let P3 = tqoqb(Q). Label the end of P3 with Q~, 
and let P4 = (tqbq~(P2)t. Observe that P2 o P3 o P4 is a walk from v; to 
v: = lqbdvi), and that y(vD < y(v;). 

Similary, we construct paths Ps, P6, P7 so that P5 o P6 o P7 is a walk 
from Vj to v.i = tqbdvi)-

Finally, let Ps = lqbq~ (Po)-
Now observe that W = Pio P2 o P3 o P4 o P8 o Pf o P6 o P5 is a closed walk 

in G. Furthermore, since Pi U P8 contains an odd number of edges, and 
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the paths in each pair P2 , P4 ; P5 , P7 ; and P3, P6 are translations of each 
other and so have the same number of edges, W has odd length. Hence 
W contains an odd cycle. To complete the proof, we need only show that 
there is no vertex win Pi, 2 ~ i ~ 8, with y(w) < 0 or y(w) 2: h . 

If w E P2, then w has distance less than n from Vi, and y(vi) = 2n, so 
n < y(w) < 3n. 

For the same reason, n < y(qb) < 3n. If w E P3 , then (because P3 has 
length no greater than n), we have O < y(w) < 4n. 

If w E P 4 , then w = tq, q~ ( w') for some w' E P2. Because of the 
inequality O < y(qb) - y(q~) ~ n, we have O < y(w) < 3n. 

Similarly, for any w E Ps U P 6 U P1 we have O < y( w) < 4n. 
Finally, if w E P8 , then w = tq~qJ w') for some w' E Pi. This implies 

2n < y(w') ~ 4n. Again, because of the inequality O < y(qb) - y(q~) ::; n, 
we haven< y(w) < 4n. 

Thus, the walk W has height no greater than h. If it has height h , 
then the only vertices b with y(b) = h in W must be in P 1 . Since Pi is a 
subgraph of C - { v}, where y( v) = h, the number of such vertices in W is 
strictly less than the number in C . The odd cycle contained in W clearly 
has these properties as well, so we are done. ■ 

The following result will be convenient as well. The proof is identical, 
aside from reversal of the co-ordinates. 

Corollary 5 If C is an odd cycle in a DP-graph G then G contains an odd 
cycle C' with width less than 4n. 

This implies that to determine if a DP-graph is 2-colourable, we need 
only consider the subgraph induced by the cells Gij, 0 ~ j < 4n. Our next 
result allows us to place a bound on the range of the first co-ordinate as 
well. 

Proof of Theorem 1: We construct a new DP-graph G' by setting 
G~j u::~:il)-l Gik· If v, W are in adjacent cells then UV E E(G') 
if and only if uv E E(G) and it is not the case that y(u) = 4nk and 
y(v) = 4nk - l (or vice versa) for any k. In other words , we combine 
columns of G in chunks of height 4n into single cells of G' , with no edges 
between vertically adjacent cells of G'. Observe that if G contains an odd 
cycle, then that cycle will be preserved in G' and will lie in a single row of 
G'. Also observe that each cell in G' contains 4n2 vertices. 

Now , applying Corollary 5 we see that G' has a cycle of width less than 
16n2 . Since there are no edges between vertically adjacent cells of G' , this 
cycle must have height one. Thus, the cycle is contained in the cells a:,o, 
0 ~ i < 16n2 , and so is contained in Gas well in the cells Gij , 0 ~ i < 16n2 , 

0 < j < 4n. ■ 
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This yields the promised algorithm. 

Corollary 6 If G is a DP-graph with n vertices in each cell, then 2-
colourability of G can be determined in O(n8 ) . 

Proof: By Theorem 1 we can restrict out attention to a finite subgraph 
F of G with O(n3 ) cells, or O(n4

) vertices. This can be checked for 2-
colourability in O(IE(F)I), or O(n8 ) time. ■ 

3 Concluding remarks 

The question of deciding whether a DP-graph is k-colourable seems to be 
related to tilings of the plane. One can think of the collection of k-colourings 
of the cells Gi,i as being a collection of tiles, and regard the adjacencies 
between neighbouring cells are compatibility relations between tiles. The 
question is whether tiles can be used to tile the plane so that each tile is 
adjacent only to tiles with which it is compatible. Problems of this sort, 
involving as few as nine tiles, are known to be undecidable [3]. The main 
issue in using a similar technique seems to be whether there exists a finite 
graph Gii whose collection of k-colourings is rich enough. 

By contrast, the question of whether a singly-periodic graph, the sub­
graph induced by a single row of a DP-graph, is k-colourable is decidable 
for every fixed positive integer k. (One can also define singly periodic 
graphs formally in a manner similar to the definition of DP-graphs.) To 
see this, let G be a singly periodic graph and note that each cell has the 
same finite number of k-colourings, say N. Construct a finite digraph C 
whose vertices are the k-colourings of G, with an arc from colouring x to 
colouring y in C if y is permissible on cell i + 1 whenever x is used on cell 
i. A k-colouring of G corresponds to an infinite, two way, directed walk in 
C . If such a walk exists, then C contains a directed cycle, and conversely. 
Thus, there is a k-colouring of G if and only if C contains a directed cycle. 
If Co, c 1 , c2, . . . , Ct-l, Co is a directed cycle in C, then the singly-periodic 
graph G can be coloured in blocks of t consecutive cells. In particular, if a 
singly-periodic graph has a k-colouring, then it has a periodic k-colouring 
(i.e., there is a constant t such that the colouring of cell Gi is identical 
to the colouring of cell Gi+t, for all i E Z. Similar statements hold for 
homomorphisms of a singly-periodic graph to a fixed finite graph H. 

The conjecture of Wang that any set of tiles which permits tiling the 
plane also permits a doubly-periodic tiling (defined in the obvious way), is 
known to be false (see [3]). This follows from the undecidability of the tiling 
problems, for (as is pointed out in [3]) if a periodic tiling always existed 
then there would be a decision procedure as to whether any given set of tiles 
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suffices. Thus, another question that arises for k-colourings of DP-graphs 
is whether there always exists a doubly-periodic k-colouring. 
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