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Abstract 

The stock market is basically volatile, and the prediction of its movement will be more useful to the stock traders to design their 
trading strategies. An intelligent forecasting will certainly abet to yield significant profits. Many important models have been 
proposed in the economics and finance literature for improving the prediction accuracy, and this task has been carried out 
through modelling based on time• series analysis. The main aim of this paper was to check the stationarity in time series data 
and predicting the direction of change in stock market index using the stochastic time series ARIMA modelling. The best fit 
ARIMA (0, 1,0) model was chosen for forecasting the values of time series, that is, SSE_ CLOSE and NSE_ CLOSE by considering 
the smallest values of AIC, BIC, RMSE, MAE, MAPE, standard error of regression, and the relatively high adjusted R2 values. 
Using this best fitted model, the predictions were made for the period ranging from January 7, 2018 to June 3, 2018 (22 expected 
values) using the weekly data ranging from January 6, 2014 to December 31, 2017 (187 observed values). The results obtained 
from the study confirmed the prospectives of ARIMA model to forecast the future time series in short-run and would assist the 
investing community in making profitable investment decisions. 
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Stock market forecasting is an exerci se to determine the future value of its performance index, that is, 
SENS EX, NIFTY. The successful prediction of any market's future index or a stock's future price wi II be 
more useful to the investing community to design optimal trading strategies that could yield significant 

profits. So, in the recent past, the concept of forecasting the stock market and its returns gained a lot of attention of 
the researchers . It may be because of the fact that if the directions of change in the market movements are 
successfully predicted, the investors may be better guided. Sometimes, the forecasted trends of the market will 
help the policy makers and regulators of the stock market in making curative decisions. The profit making 
investments and day to day operations in the capital market depend heavily on the forecasting ability. 

Many practicing investors like Warren Buffett and other market researchers have proposed several models 
using various analytical methods, that is, fundamental analysis, technical analysis, and analytical techniques, etc. 
to give more or less exact forecasting. in addition to the above methods of forecasting, some traditional time series 
models were also used for it. Mainly, there are two kinds of time series models for forecasting, that is, linear 
models and non - linear models. Some of the examples of linear models are moving average, exponential 
smoothing, time series regression, etc. One among the most common and popular linear models is the 
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autoregressive integrated moving average (ARIMA) model proposed by Box and Jenkins (1976). In this paper, a 
modest attempt has been made to select the best fitted ARIMA model from different stochastic models that 
satisfies all the criteria of goodness of fit statistics for making the predictions and also to forecast the future values 
of stock market indices. 

Review of Literature 

It is pertinent to review the accessible literature connected to time series modeling and forecasting using ARIMA 
model. Most of the literature is focused on the identification of suitable ARIMA time series model and forecasting 
the gold price, exchange rates, oil palm prices, inflation rates, electricity consumption, etc. Only few studies are 
available relating to the forecasting of stock prices and stock market indices. Hence, this paper has been mainly 
devoted to the studies related to the determination of best ARIMA time series model and forecasting of future 
stock prices and stock market indices. 

Meyler, Kenny, and Quinn (l 998) developed the ARIMA time series predicting model for predicting the 
inflation in Ireland. In their study, they focused on maximizing the power of forecasting by minimizing forecast 
errors. Contreras, Espinola, Nogales, and Conejo (2003) examined the trends in daily prices of electricity in spot 
and forward contracts for mainland Spain and Californian markets and provided the best - suited ARJMA method 
to predict the next day electricity prices. 

Nochai and Tidia (2006) conducted a study with an objective to find an appropriate ARIMA model for 
forecasting three types of oil palm prices by considering the minimum mean absolute percentage error. The 
empirical analysis of the study showed thatARIMA (2, 1,0), (1,0, 1 ), and (3 ,0,0) are the best models for forecasting 
the farm prices of oil palm, wholesale price of oil palm, and pure oil price of oil palm, respectively. 

In a study conducted by Jarrett and Kyper (2011) using the data developed by Pacific - Basin Capital Markets 
(PA CAP) and the SINO FIN Information Services Inc. demonstrated the usefulness of ARIMA- intervention time 
series analysis as both an analytical and forecast tool. The study indicated the usefulness of the developed model in 
explaining the rapid decline in the values of the price index of Shanghai market during the world economic decline 
in China in 2008. The authors concluded that the daily stock price index contained an autoregressive component; 
hence, it was better to forecast the stock returns usingARIMA model. 

Banerjee (2014) used the ARIMA model for predicting stock market indices and also highlighted that they 
have an undue influence on the progress of the Indian economy. The study dealt with the identification of the best 
fit ARI MA model and after that predicted the SEN SEX using the justified model. 

Adebiyi and Adewumi (2014) presented the procedure for developing ARIMA models for forecasting share 
prices during the short-run. The results of the study explained the power of ARIMA models in predicting the stock 
prices in the short-run, which would help the investors in their decisions . A study was conducted by Jadhav, 
Kakade, Utpat, and Deshpande (2015) for forecasting the Indian share market using ARIMA model and said that 
artificial neural networks (ANNs) are universal approximates that can be applied to a wide range of time series for 
forecasting futuristic values in share market and give bright scope for investment. However, in their study, they 
proposed a novel hybrid model of ANN using ARIMA model instead of only artificial neural network for 
improving the predictive performance. 

Guha and Bandyopadhyay (2016) examined the application of ARIMA time series model to forecast the future 
gold prices based on the past data from November 2003 to January 2014 to mitigate the risk in purchase of gold 
and, hence, to give guidelines for the investor when to buy or sell the yellow metal. The authors opined that 
nowadays, gold has gained importance as one of the investment alternatives ; it has become necessary to predict 
the price of gold with an appropriate method. 

Savadatti (2017) carried out a study to identify the best fitted ARIMA models for forecasting the area, 
production, and productivity of food grains for 5 years. Based on univariate time series analysis, the study 
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identified ARIMA (2,1 ,2), ARIMA (4,1,0), and ARIMA (3,1,3) models for forecasting the data on area, 
production, and productivity of food grains, respectively and these models were found to be adequate. The 
forecast values indicated that production and productivity increased during the forecast period but that of area 
exhibited near stagnancy, calling for timely measures to enhance the supply of food grains to meet the increasing 
demand in the future years. 

Dikshita and Singh (2019) examined the different volatility estimators for forecasting volatility with high 
accuracy by traders, option practitioners, and various players of the stock market. The study evaluated the 
efficiency and bias of various volatility estimators based on various error measuring parameters, that is, ME, 
RMSE, MAE, MPE, MAPE, MASE, andACFI. The study identified the Parkinson estimator as the most efficient 
volatility estimator. The study also suggested that the forecasted values were accurate based on the values of 
MAE and RMSE. 

It may be concluded that many researchers have conducted studies to give reasons for the selection of ARIMA 
model for forecasting the time series data of a single variable with better accuracy. However, no researcher has 
focused on forecasting stock market indices in the Indian context. The present work is an effort to forecast the 
indices ofBSE and NSE based on the past 187 weeks using the best fitted ARIMA model. 

Statement of the Problem 

Due to them being dynamic and non - linear in nature, it is very tricky to predict the stock exchange movements 
precisely. However, it is necessary to forecast and uncover non - linearity of the stock market to enable individual 
and institutional investors to design appropriate trading strategies and to achieve better results out of their 
investment endeavors. Hence, stock market forecasting has become a significant theme and has motivated 
researchers to build improved forecasting models. There are quite a few methods of statistical forecasting, that is, 
regression analysis, classical decomposition method, Box and Jenkins and smoothing techniques, with different 
degrees of accuracy. The accuracy of a forecasting model is based on the minimum errors of forecasting, that is, 
root mean square error, mean absolute error, standard error of regression, adjusted R-square, Akaike information 
criterion, Bayesian information criterion, etc. Among several methods of time series forecasting, the Box and 
Jenkins method is quite accurate compared to other methods and may be applicable to all types of data 
movements. This paper is an attempt to test the stationarity in the given time series and selecting the best suitable 
ARIMA model (also known as Box - Jenkins methodology) for short-term forecasting of BSE and NSE. The 
results obtained from the study can aid the investors in their investment decision - making process. 

Objectives of the Study 

The objectives of the study are listed below: 

(1) To test the stationarity of the time series data compiled for the study, that is, weekly closing index values ofBSE 
(BSE _ CLOSE) and NSE (NSE _CLOSE). 

(2) To choose the optimumARIMAmodel for estimating the series. 

(3)To forecast the indices ofBSE and NSE using the selected time- seriesARIMA model. 

Research Methodology 

(1) Research Design: Keeping in view of the above listed objectives of the study, an exploratory research design 
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and stochastic modeling has been adopted. Exploratory research is one which interprets the already available 
information and it lays particular emphasis on the analysis and interpretation of the available secondary data. 
Stochastic modeling is used for selecting the best AR.IMA model and forecasting the time series using the 
selected model. 

(2) Sources of Data : The data required for the present study is secondary in nature and has been compiled from an 
online source, that is, yahoofinance.com. The weekly closing indices of BSE and NSE are obtained from the 
website for the period from June 6, 2014 to June 3, 2018 (209 observations). From this range of data, I have taken 
the sample data ranging from June 6, 2014 to December 31, 2017 (187 observations) for making predictions 
ranging from January 7, 2018 to June 3, 2018 (22 observations). 

(3) Hypothesis : The null hypothesis is generally defined as the presence of a unit root and the alternative 
hypothesis is stationarity ( or trend- stationary). 

~ H01 : 8 = 1, there is unit root and the series (BSE _ CLOSE and NSE _ CLOSE) is non stationary. 

~ H01 : 8 < 1, there is no unit root and the series (ESE_ CLOSE and NSE _ CLOSE) is stationary. 

Analysis and Results 

To select the best fitted AR.IMA model, among several experiments conducted, many statistical tools are to be 
applied, that is, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error 
(MAPE), Akaike information criterion (AlC), Bayesian information criterion (BIC), etc. 

The RMSE has been used as a standard metric to measure the model performance in stock market forecasting. 
While applying the RMSE, the underlying assumption is that the errors are unbiased and follow a normal 
distribution. It provides a complete picture of the error distribution and its value should be relatively low 
(Draxler, 2014). The RMSE can be calculated by using the following formula: 

....... ... .. ..... (1) 

Mean absolute error measures the average magnitude of the errors in a set of predictions without considering 
their directions. It is the average over the test sample of the absolute differences between prediction and actual 
observations where all individual differences have equal weight. Hence, its value should be low. The MAE 
coefficient is given by the following equation (Draxler, 2014) : 

I " MAE = n I: fx; - x;f 
i= I 

................. (2) 

The mean absolute percentage error is a measure of prediction accuracy of a forecasting method. It usually 
expresses the forecasting accuracy of a model in percentage terms ; hence, its value should be maximum. The 
MAPE formula as stated by Tofallis (2015) is: 

MAPE = 100% t. /X;-X; I 
n i = I X ; 

...... .... ..... .. (3) 

Bayesian information criterion, also known as Schwarz information criterion (SIC), is a criterion for model 
selection among a finite set of models. It is based on the likelihood function, and it is closely related to Akaike 
information criterion (AIC). Mathematically, the BIC is an asymptotic result derived under the assumption that 
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the data series is exponentially distributed. The BIC was developed by Schwarz (1978), who gave a Bayesian 
argument for adopting it. 

BIC = log (r~s) + ! log n ...... ........... (4) 

where, rss is residual sum of squares ; k is the number of coefficients estimated, that is, 1 + p + q + P + Q ; and n is 
the number of observations. 

(1) Augmented Dickey- Fuller Unit Root Test: The initial phase of tructuring the ARIMA model is to recognize 
whether the variable being predicted is stationary in time series or not. Most forecasting methods assume that a 
distribution has stationarity. A time series has stationarity if a shift in time does not cause a change in the shape of 
the distribution, that is, the mean and auto-covariance of the series do not depend on time (Tsay, 2005). Unit roots 
are one cause for non-stationarity. An absence of stationarity can cause unexpected behaviors in data series. Most 
real-life data sets just are non - stationary and we should make it stationary in order to get any useful predictions 
from it. Augmented Dickey - Fuller (ADF) unit root test examines whether a time series variable is non - stationary 
and possesses unit root. A common example of a non-stationary series is the random walk. We may write the 
random walk model (RWM) with stochastic process as (Garekos & Gramacy, 2013 ; Rao & Mukherjee, 1971) : 

where, 

t = time measured chronologically ; and 

u, = white noise error term. 

··· ····· ·········(5) 

For theoretical reasons, we manipulate equation ( 5) by subtracting Y,_1 from both the sides to obtain : 

............. ..... . (6) 

which can be written as : 

.. ...... ..... ... ... (7) 

where, p = (o - 1 ), and~ = first difference operator. 
In practice, instead of estimating equation (5), we estimate equation (7) and test the hypothesis (null) that 

p = 0. If p = 0, then o = 1, that is , we have a unit root, meaning that the time series under consideration is 
non - stationary. Before we proceed to estimate equation (7), it may be noted that if o = 0, equation (7) will 
become: 

... ... ..... .. .. ..... (8) 

Since u, is the white noise error term, it is stationary, which means that the first differences of a random walk time 
series are stationary. 

Before running the ADF test, one should inspect the data to figure out an appropriate regression model. We 
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have three versions of the test: 

Type 0 No Constant, No Trend ~ Y, = P1 Y,_1 + u, 

Type 1 Constant, No Trend 

Type 2 Constant, Trend 

~Y, =Po+ P1Y,.1 + u, 

~Y, =Po+ P1Y,.1 +Pit+ u, 

The Augmented Dickey - Fuller adds lagged differences to the above models (Gujarati, 2004) : 

Type0 No Constant,NoTrend ~Y, = P1Y,_1 + f a ;~Y,.;+ u, 

Type 1 Constant, No Trend 

Type 2 Constant, Trend 

where, 

u, = Error term; and 

~ Y,.; = Lagged differences. 

; - 1 

Number of lagged differences to be added in the model is often decided numerically so that the residuals are not 
serially correlated. Moreover, there are several options for choosing lags : Minimize Akaike's information 
criterion (AIC), or Bayesian information criterion (BIC), or drop lags until the last lag is statistically significant. 

ADF test with intercept was applied on both series to test the data for stationarity. The null hypothesis is tested 
through t - statistics, which is given by the following formula : 

t= 
8- C) HO 

SE of 8 
.......... .. .. ..... (9) 

If 't ' calculated is greater than the critical value, we do not reject the null hypothesis and the series under 
consideration would be non - stationary and has a unit root. On the other hand, if 't ' calculated is less than the 
critical value, we reject the null hypothesis and the series under consideration would be stationary and does not 
have the unit root. First, the series should be tested on level and ifit does not become stationary, then we should test 
the series at the first and second difference sequentially. 'p' - value is also used to reject or accept the null 
hypothesis. If the 'p' - value is less than 0.05 (p < 0.05), the null hypothesis is rejected and vice - versa. 

The ADF Test (Table 1) at level depicts that the calculated 't ' - value is greater than the critical values at 1 %, 
5%, and l 0% levels of significance. At levels, both the underlying series (ESE_ CLOSE and NSE _ CLOSE) are 
non - stationary. The p - value of the series is also greater than 0.05. Hence, we do not reject the null hypothesis 
(H01 ) and accept the alternative hypothesis (H.1) that the series has a unit root. When the series (Y,) is 
non - stationary, it must be differenced 'd' times before it becomes stationary, then it is said to be integrated of 
order 'd' (Brooks, 2008). The results of ADF test at first difference are presented in the Table 2. 

The ADF test (Table 2) at first difference reveals that both the series are stationary at first difference. The 
calculated value of DBSE _ CLOSE is -13.97590, which is less than the critical values at all levels of significance. 
Similarly, the 't' - statistics of DNSE_ CLOSE is -14.28255, which is also less than the critical values at all levels of 
significance. Therefore, the null hypothesis (H01) is rejected and it can be concluded that both the series are 
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Table 1. Augmented Dickey - Fuller Test at Level 

H0 is : 85£_ CLOSE has a unit root. 

Exogenous: Constant, Linear Trend 

Lag Length : 0 (Automatic-based on 

AIC, maxlag = 14) 

ADF test statistic 

Test critical values 1% level 

5% level 

t-statistic 

-1.603668 

10%1evel 

* MacKinnon {1996) one-sided p - values. 

Augmented Dickey - Fuller Test Equation 

Dependent Variable : D(BSE_CLOSE) 

Method: Least Squares 

Date :06/22/18 Time:05 :51 

Sample (adjusted) : 6/15/2014 6/03/2018 

Included Observations: 208 after adjustments 

Variable Coefficient Std. Err. 

BSE_ CLOSE(-1) -0.028791 0.017953 

C 713.4920 449.9443 

@TREND 1.538760 0.901803 

("6/08/2014") 

R-squared 0.015160 Mean 

dependent var 

Adj R-squared 0.005552 S.D. 

dependent var 

S.E. of regression 518.7404 Al Criterion 

H0 is : NS£_ CLOSE has a unit root. 

Exogenous: Constant, Linear Trend 

Lag Length : 0 (Automatic-based on 

AIC, maxlag = 14) 

Prob.* 

0.7886 ADFtest statistic 

-4.002786 Test critical values 1% level 

-3.431576 

-3.139475 

5% level 

10% 1evel 

t-statistic 

-1.787570 

* MacKinnon (1996) one-sided p - values. 

Augmented Dickey - Fuller Test Equation 

Dependent Variable : D(NSE_CLOSE) 

Method: Least Squares 

Date:06/22/18 Time:07 :28 

Sample (adjusted) : 6/08/2014 6/03/2018 

Included Observations: 209 after adjustments 

t-stat Prob. Variable Coefficient 

-1.603 

1.585 

1.706 

0.1103 

0.1143 

0.0895 

49.112 

520.18 

NSE_CLOSE(-1) 

C 

@TREND 

("6/08/2014") 

R-squared 

Adj R-squared 

S.E. of regression 

-0 .032916 

246.6873 

0.540804 

0.017105 

0.007105 

157.8433 

Prob.* 

0.7075 

-4.002786 

-3.431576 

-3.139475 

Std. Err t-stat Prob. 

0.018414 -1.787 0.0753 

137.8652 1.789 0.0750 

0.300068 1.802 0.0730 

Mean 

dependent var 

S.D. 

dependent var 

Al Criterion 

15.235 

158.44 

Sum squared resid 55163775 Schwarz criterion 15.403 Sum squared resid 5132391 Schwarz criterion 

12.975 

13.023 

12.994 

1.9596 

Log likelihood -1593.920 

F-statistic 1.577813 

Prob (F-statistic) 0.2018922 

HQ Criterion 

Durbin-Watson 

Stat 

15.374 

1.9243 

Loglikelihood -1352.922 HQCriterion 

F-statistic 1. 792443 Durbin-Watson 

Stat 

Prob (F-statistic) 0.169141 

Table 2. Augmented Dickey - Fuller Test at First Difference 

H0 is : DBSE_CLOSEhasa unit root. H0 is : D(DNSE_CLOSE) has a unit root. 

Exogenous: Constant, Linear Trend Exogenous: Constant, Linear Trend 

Lag Length :2 (Automatic-based on AIC, maxlag=14) Lag Length :2 (Automatic-based on AIC, maxlag=14) 

ADF test statistic 

Test critical values 1% level 

5% level 

t-statistic 

-9.75042 

Prob.* t-statistic 

0.0000 ADF test statistic -9.796126 

-4.002449 Test critical values 1 % level 

-3.431896 5% level 

Prob.* 

0.0000 

-4.003226 

-3 .431789 
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10% level 

*MacKinnon (1996) one-sided p - values. 

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(BSE_CLOSE} 

Method: Least Squares 

Date:06/22/18 Time:14:05 

Sample (adjusted): 7/06/2014 6/03/2018 

Included Observations: 205 after adjustments 

Variable Coeffi Std. Err. 

D(NSE_ CLOSE(-1)) -1.1881 0.0179 

D(NSE_CLOSE(-1 ),2) 0.2015 0.0972 

D(NSE_CLOSE(-2),2) 0.1285 0.0696 

C -12 .. 4935 74.332 

@TREND 0.6378 0.6143 

("6/08/2014") 

R-squared 0.50384 Mean 

dependent var 

Adj R-squared 0.49391 S.D. 

dependent var 

S.E. of regression 518.778 Al Criterion 

Sum squared resid 53426199 Schwarz criterion 

Log likelihood -1569.904 HQ Criterion 

F-statistic 50.77432 Durbin-Watson 

stat 

Prob (F-statistic) 0.0000 

-3.139664 10% level 

*MacKinnon (1996) one-sided p-values. 

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(NSE_ CLOSE) 

Method: Least Squares 

Date:06/22/18 Time:14:03 

Sample (adjusted) : 6/29/2014 6/03/2018 

Included Observations: 206 after adjustments 

t-stat Prob. Variable Coeffi 

-9.7504 0.000 D(NSE_ CLOSE(-1)) -1.2034 

2.0725 0.039 D(NSE_ CLOSE(-1),2) 0.1979 

1.8452 0.066 D(NSE_CLOSE(-2),2) 0.1445 

-0.1680 0.866 C -5.9844 

1.03829 0.300 @TREND 0.1204 

("6/01/2014") 

-3.149 R-squared 0.51073 

729.24 Adj R-squared 0.50099 

15.364 S.E. of regression 159.057 

15.445 Sum squared resid 5085154. 

15.397 Log likelihood -1334.039 

1.9527 F-statistic 52.45409 

stat 

Prob (F-statistic) 0.000000 

-3.139601 

Std. Err t-stat Prob. 

0.1228 -9.7961 0.0000 

0.0985 2.0080 0.0460 

0.0698 2.0705 0.0397 

22.739 0.2631 0.7927 

0.1867 0.6450 0.5199 

Mean 0.3597 

dependent var 

S.D. 225.165 

dependent var 

Al Criterion 13.008 

Schwarz criterion 13.081 

HQ Criterion 13.033 

Durbin-Watson 1.9890 

Figure 1. Graphs of BSE_ CLOSE and NSE_ CLOSE Series at First Difference 
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stationary at 1 %, 5%, and 10% levels of significance, and both the series do not have the unit root. An informal 
method to test the stationarity also confirms the results of the formal test, that is, theADF test. Graphs of both the 
series at first difference do not demonstrate any kind of trend ; there are fluctuations in the graphs. These 
fluctuations epitomize the stationarity of the underlying series (shown in Figure 1). 

(2) Correlogram Analysis: A correlogram (also called auto correlation function plot) is an image of correlation 
statistics and it gives a summary of correlation at different periods of time, that is, serial correlation. Serial 
correlation is where an error at one point in time travels to a subsequent point of time. It is a commonly used tool 
for checking the randomness in a data set. A correlogram contains the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). Autocorrelation refers to the way the observations in a time series are related to 
other and is measured by a simple correlation between current observation (Y,) and the observation 'p' periods 
(lag p) from the current one (Y,) (Abdullah, 2012 ; Brooks, 2008). The autocorrelation coefficient at 'lag p' is 
given by : 

.... ...... ... .. .. (10) 

where, 
cp = the auto - covariance function; and 

c0 = the variance function. 
1 N-p - -

cp • N ~ (Y,-Y)*(Y,+p-Y) .. .... .... ... .... (11) 

.. .... .. ........ . (12) 

The resulting value of'rp' will range between -1 and + 1. 
Partial autocorrelations (PACF) are used to measure the degree of association between Y, and Y,_P when the 

effect of other time lags 1, 2, 3, .... . . , (p-1) are removed. The Figure 2 represents the plot of correlogram (ACF and 
PACF coefficients) of the time series BSE _ CLOSE and NSE _ CLOSE for lags 1 to 20 at the level (zero order 
difference). We may infer from the correlogram that the ACF of BSE_CLOSE and NSE_CLOSE were dropped 
away very gradually; thus, the data in time series is non - stationary. Hence, there is a need to convert 
non - stationary series into stationary by differencing. 

The Figure 3 shows the spikes of correlogram, auto correlation, and partial auto correlation coefficients for the 
lags 1 to 20 at the first order difference of the time series, that is, BSE _ CLOSE andNSE _ CLOSE. 

The plots say that the first order difference of the data after transformation is random. If the model is fit, then the 
residuals of the model would contain the sequence of probable errors. Since spikes of ACFs and PACFs are 
insignificant, the residuals of the chosen ARIMA model are white noise, and hence, the time series data has 
become stationary. This is essentially a random walk process and there is no need to think about any other AR(p) 
and MA( q) models further. Hence, the transformed time series essentially follows an ARIMA (0, 1,0) process. The 
random walk model in stock price and market index forecasting has been commonly used and studied throughout 
history (Fama, 1965). The random walk model has similar implications as the efficient market hypothesis, 
suggesting that one cannot outperform the market by analyzing historical prices of a certain stock or index of the 
overall market. 
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Fig No.2 
Corrdo nm of BSE CLOSE and NSE CLOSE 

Date:06/22/18 Time:15:08 Date:06/22/1 8 Time:15:13 
Sample: 6/08/2014 6/03/2018 Sample: 6/01 /2014 6/03/ 2018 
Included observation.a: 209 Included observations: 210 

Autoallretatiln Partal conelaloo IC p,c QS1at Prob AIID CD rrelalon Partial Correlallon />C P/>C a-stat Prob 

:r.- 1 0.971 0.971 199.72 0.000 :r.- 1 0.97, 0.97' 202.12 0.000 
2 09'1 -0.022 388,24 0.000 2 0.~8 -0.011 394.61 0.000 

f 
3 0,914 0 .. 036 567.00 0.000 

l 
3 0.92, 0.022 578.36 0.000 

I ' 0.892 0.076 138.22 0.000 I I 4 0.90, 0.055 754.89 0.000 
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(3) ARIMA Model for Forecasting: The ARIMA model is the composition of a series of steps for discovering the 
best model, supposing and identifying the different (ARIMA) models using available data in time series, and 
forecasting the series using the best model. It is one of the well-known techniques for economic forecasting. 
ARIMA models are extremely capable to produce projections during short-term (Merh, Saxena, & Pardasani, 
2010). These are the best composite structural models useful for short-term forecasts (Pai & Lin, 2005). In 
ARIMA model, the expected value of any variable is a linear combination of past values and errors (Hanke & 
Wichern, 2005), expressed as follows : 

(i) Auto Regressive Model [AR(p)] : An AR model is one in which' Y,' depends only on its own past values, that is, 

Y,_,, Y,.21 Y,_3, etc. Thus, Y, = f(Y,_,, Y,_21 Y,_3, ... ..... , E,) ....... ......... (13) 

A common representation of an autoregressive model where it depends on 'p' of its past values called AR(p) model 
is represented below: 

........ .. ....... (14) 

where Y, = affecting ( dependent) variable at time t. 

Y, _,, Y, _2, •••••• , Y,_P = Response variable attime lags t-1, t-2, ... .. , t-p, respectively. 

~ 0, ~ ,, ~ 2, • • •••• , ~ P = Coefficients to be estimated. 

E, = Error term at time t. 

(ii) Moving Average Model [MA(q)] : A moving average model is one when Y, depends only on the random error 
terms which follow a white noise process, that is, 

Y, = f ( E,, E,_', c,_2, c,.3, .. ... ... ) ... ... ........... (15) 

A common representation of a moving average model where it depends on 'q' of its past values is called MA( q) 
model and is represented below : 

....... ........ .. (16) 

The error terms E, is assumed to be white noise processes with mean zero and variance cr2. 
where, 

Y, = Response variable (dependent) variable at time t, 

~°' = Constant mean of the process, 

<J, 1, <J,2, <p3, • •• • • • , <J>q = coefficients to be estimated, 

E, = Error term at time t. 

E,_ ,, E,_2, E,_3 ... .. ... E,_q = Errors in previous time periods that are incorporated in Y,. 

(iii) Auto Regressive Moving Average (ARMA) Model : There are situations where the time series may be 
represented as a mix of both AR and MA models referred to as ARMA (p,q) . The general form of such a 
time - series model, which depends on 'p' of its own past value and 'q' past values of white noise disturbances take 
the form: 
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............ ........ (17) 

(iv) Selection of Appropriate ARIMA (p,d,q) Model : Model for non - seasonal series is called autoregressive 
integrated moving average model denoted by ARIMA (p,d,q). Here 'p' is the order of autoregressive part, 'd' 
indicates the order of differencing, and 'q' indicates the order of moving average part. In general, a series which is 
stationary after being differenced 'dtimes' is said to be integrated of order 'd, 'denoted by l(d). If the original series 
is stationary, d = 0 and the ARIMA models reduce to ARMA models. The time series data used for the present 
study, that is, BSE _ CLOSE and NSE _ CLOSE have become stationary after the first order differencing. Since there 
is no need for further differencing the series, it is necessary to adopt d =l (first difference) for ARIMA (p, d ,q) 
model. To get the appropriate numbers for 'p' (in AR) and 'q' (in MA) in the model, we should check the 
correlogram after first difference in time series (Figure 2). Since there are no significant spikes of ACF and PACF, 
the residuals of the selected ARIMA model are white noise and there is no need for further consideration of one 
more AR (p) and MA (q). To choose one best ARIMA model amongst the numerous combinations present, the 
following criterions are used: 

(a) Comparatively low of Akaike/Bayesian/Schwarz Information criterions (AIC/BIC/SIC). 

(b) Comparatively low S.E. of Regression. 

(c) Comparatively high adjustedR- square (R2
). 

(d) Root mean square error (RMSE) should be relatively low. 

(e) Mean absolute error (MAE) and mean absolute percentage error (MAPE) should be low. 

Table 3 and Table 4 provide the results of various parameters of AR(p) and MA( q) of the ARIMA model. Using 
these values, the best fit model for predicting the time seriesDBSE _ CLOSE and DNSE _ CLOSE are identified. 

After checking the robustness of the statistics given in the Table 3 and Table 4, it is found that only ARIMA 
(0, 1,0) model convinces all the norms (lowest AIC, BIC, RMSE, MAE, MAPE, standard error of regression, and 
the relatively high adjusted R2 values) . Hence, this model is considered to be the best predictive model, which is 
used to forecast the future values of the time series, that is, BSE _ CLOSE and NSE _ CLOSE. The prediction 
equation for this model can be written as: 

Table 3. Output for Various ARIMA Parameters for DBSE_CLOSE 

ARIMA RMSE MAE MAPE S.E. of Regression Log Likelihood Adjusted It AIC BIC 

(0,1,0) 518.9344 407.0126 135.6836 520.1864 -1595.509 0.00000 15.3510 15.36709 

(1,1,0) 520.0480 408.1295 135.3038 522.5642 -1595 .448 -0.00916 15.3696 15.41783 

(1,1,1 ) 520.0340 408.1138 135.1785 523.6914 -1595.388 -0 .01352 15.3787 15.44291 

(2,1,0) 521.2446 409.8329 131.5123 521.2495 -1594.929 -0.00409 15.3647 15.41284 

(2,1,1) 521.2519 409.8372 131.5177 522.4525 -1594.900 -0.00873 15.3740 15.43822 

(1,1,2) 519.9580 408.0805 135.3919 522.4621 -1594.904 -0.00876 15.3740 15.43826 

(2,1,2) 521.2424 409.8305 131.5162 522 .5242 -1594.929 -0.00900 15.3743 15.43850 

Note. The values in the first row represent the best ARIMA model among different combinations. 
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Table 4. Output for Various ARIMA Parameters for DNSE_CLOSE 

ARIMA RMSE MAE MAPE S.E. of Regression Log Likelihood AdjustedR' AIC BIC 

{0,1,0) 158.0640 125.1574 195.6765 158.4436 -1354.725 0.00000 12.9734 12.9894 

(1,1,0) 158.3947 125.4862 195.9553 159.2095 -1354.723 -0 .00969 12.9925 13.0405 

(1,1,1) 158.3945 125.4854 195.9649 159.5926 -1354.717 -0 .01455 13.0028 13.0660 

(2,1,0) 158.7299 125.8748 196.6628 158.9947 -1354.444 -0 .00696 12.9898 13.0378 

(2,1,1) 158.7298 125.8755 196.6935 159.3812 -1354.443 -0 .01187 12.9994 13.0634 

(1,1,2) 158.3971 125.5027 196.4437 159.3827 -1354.445 -0 .01189 12.9994 13.0634 

(2,1,2) 158.7296 125.8748 196.6631 159.3818 -1354.444 -0 .01187 12.9994 13.0634 

Note. The values in the first row represent the best AR I MA model among different combinations. 

Y,-Y,_1 = µ, or equivalently Y, = Y,_1 + µ, ........ ... ... ... (18) 

..... . where the constant term is the average period - to - period change (i.e. , the long-term drift) in' Y '. This 
model could be fitted as a no - intercept regression model in which the first difference of 'Y' is the dependent 
variable. 

(4) Forecasting Using Selected ARIMA (p, d, q) Model : The present study is based on weekly data on the closing 
indices ofBSE (BSE_CLOSE) and NSE (NSE_CLOSE) covering the period from June 8, 2014 to June 3, 2018, 
having a total number of209 observations, of which the period from January 7, 2018 to June 3, 2018 having 22 
observations are used for forecasting length. 

(i) Results of ARIMA (0,1,0) Model for BSE_CLOSE Prediction : The Table 5 exhibits the forecasting results of 
ARIMA (0,1,0) model, which is regarded as the best fit model for prediction of BSE_CLOSE index. The table 
shows the actual and predicted values of series for the forecast length (22 observations) ranging from January 7, 
2018 to June 3, 2018. It is observed from the summary ofARIMAforecasting model that the software bas selected 
the log of dependent variable after first differencing, that is, DLOG(BSE _ CLOSE) and the forecast length is 22 
weeks. The software bas estimated nine models and out of them, the best ARMA model selected is (0,0)(0,0). The 
value of Akaike information criterion of this model is observed to be very small than all other models tested. 

The Figure 4 is the graphical illustration and shows the level of accuracy of the selected ARIMA model, which 
exhibits the predicted performance of the BSE (BSE _ CLOSE) against the actual performance during the 
forecasted period. The line of forecasting of BSE _ CLOSE continues to rise during the forecasting period, that is, 
from January 7, 2018 to June 3, 2018. When compared to the forecasted performance, the actual performance of 
BSE_CLOSE during the period from February 4, 2018 to March 18, 2018 is quite unsatisfactory. However, the 
market revived by the end of June 3, 2018 . 

According to Table 6, ARlMA (0, 1,0) is relatively the best model. The model returns the smallest Akaike 
information criterion of-5.06570, smallest Bayesian or Schwarz information criterion of-5.04836, and relatively 
smallest standard error of regression of 0.019169. It is also observed from the model selection criteria table 
(Table 7) that out of nine models verified, ARMA (0,0)(0,0) is found to be the best model as its LogL, AIC, BIC, 
and HQ coefficients are smaller than the remaining eight models. 

(ii) Results of ARIMA (0,1,0) Model for NSE_CLOSE Prediction : The Table 8 contains the empirical results of 
ARlMA (0, 1,0), which is regarded as the best fit model for prediction of NSE _ CLOSE index. The Table shows the 
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Table 5. Sample Empirical Results of ARIMA (0, 1, O} of BSE_CLOSE 

Sample Period 

31st Dec, 17 

7th Jan, 18 

14th Jan, 18 

21stJan, 18 

28th Jan, 18 

4th Feb, 18 

11th Feb, 18 

18th Feb, 18 

25th Feb,18 

4th Mar,18 

11th Mar, 18 

18th Mar, 18 

25th Mar, 18 

1st Apr, 18 

8th Apr, 18 

15th Apr, 18 

22nd Apr, 18 

29th Apr, 18 

6th May, 18 

13th May, 18 

20th May, 18 

27th May, 18 

3rd June, 18 

Actual Values 

34153.85 

34592.39 

35511.57 

36050.44 

35066.75 

34005.76 

34010.76 

34142.14 

34046.94 

33307.14 

33176.00 

32596.53 

32968.67 

33626.96 

34192.64 

34415.57 

34969.69 

34915.37 

35535.78 

34848.30 

34924.87 

35227.26 

35443.67 

Predicted Values 

34153.85 

34209.52 

34265.28 

34321.13 

34377.07 

34433.10 

34489.22 

34545.43 

34601.74 

34658.14 

34714.63 

34771.21 

34827.88 

34884.65 

34941.50 

34998.46 

35055.50 

35112.64 

35169.87 

35227.19 

35284.61 

35342.12 

35339.72 

Summary of the ARIMA Forecasting Model 

Automatic ARIMA Forecasting 

Selected dependent variable : DLOG(BSE_ CLOSE) 

Date: 07 /01/18 Time: 21:56 

Included observations: 186 

Forecast length: 22 

Number of estimated ARMA models: 9 

Number of non-converged estimations: 0 

Selected ARMA model: (O,O} (O,O} 

AICvalue: -5.05495260101 

Figure 4. Actual and Forecast Graph of ARIMA (0,1,0) Model 
Actual and Forecast 
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Table 6. ARIMA (0,1,0} Estimation Output with DLOG(BSE_CLOSE) 

Dep. Variable: DLOG(BSE_ CLOSE) 

Method : Least Squares 

Date : 07 /01/18 Time : 21:56 

Sample (Adjusted} : 6/15/2014 12/31/2017 

Included observations: 186 after adjustments 

Variable Coefficient 

C 0.001629 

R-squared 0.000000 

Adj . R-squared 0.000000 

S. E. of Regression 0.019169 

Sum squared residuals 0.067977 

Log likelihood 472.1106 

Durbib-Watson Stat 2.044222 
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Std. Error 

0.001406 

Mean Dependent variable 

S.D. dependent variable 

Akaike info criterion 

Schwarz criterion 

Hannan-Quinn criterion 

t-Statistic 

1.158693 

Prob. 

0.2481 

0.00162 

0.01916 

-5.06570 

-5.04836 

-5.05867 



Table 7. Model Selection Criteria Table 

Dependent Va riable: DLOG(BSE_ CLOSE) 

Date : 07 /01/18 Time: 21:56 
Akaike Information Criteria 

-5 .03trr--- ..,---.,....----,---,.-~--,---,----, 

Sample: 6/08/2014 12/31/2017 

Included obse rvations: 186 

Model Logl AIC* SIC HQ 

(0,0)(0,0) 472.11059 -5.05495 -5 .02026 -5.04089 

(0,1)(0,0) 472 .16480 -5.04478 -4 .99275 -5.02369 

(1,0){0,0) 472 .11059 -5.05495 -5.02026 -5.04089 
-5.04 

(1,1 )(0,0) 473 .02099 -5.04323 -4 .97386 -5.01512 
-- .05 

(0,2){0,0) 472.69304 -5.03971 -4 .97033 -5.01159 

(2,0)(0,0) 472.57814 -5.03847 -4.96910 -5.01036 -5.05 

(2,2)(0,0) 474.55985 -5.03827 -4.93422 -4.99611 

(2,1 )(0,0) 473.47053 -5.03731 -4 .95060 -5.00217 

6' s s s 6' 2 s s s 
~ ~ 8 ~ ~ c " 0 ~ 0 

~ N 2 ~ 
d 

q 
8 e :::;, ._, e ci ci :::;, 

(1,2)(0,0) 473 .38908 -5.03644 -4 .94972 -5.00130 

Table 8. Sample Experimental Results of ARIMA (0,1,0) of NSE CLOSE 

Sample Period 

31stDec17 

7th Jan 18 

14th Jan 18 

21st Jan 18 

28th Jan 18 

4th Feb 18 

11th Feb 18 

18th Feb 18 

25th Feb 18 

4th Mar18 

11th Mar18 

18th Mar18 

25th Mar18 

1st Apr 18 

8thApr18 

15th Apr 18 

22nd Apr18 

29th Apr 18 

6th May18 

13th May 18 

20th May18 

27th May18 

3rd June 18 

Actual Values Predicted Values 

10558.85 10558.85 

10681.25 10577.56 

10894.70 10596.30 

11069.65 10615.07 

10760.60 10633.87 

10454.95 10652.71 

10452.30 10671.59 

10491.05 10690.49 

10458.35 10709.43 

Summary of the ARIMA Forecasting Model 

Automatic ARIMA Forecasting 

Selected dependent variable : DLOG(NSE_CLOSE) 

Date: 07 /01/18 Time: 23 :01 

Included observations: 187 

Forecast length: 22 

Numberof estimated ARMA models : 9 

Number of non-converged estimations: 0 

Selected ARMA model : (O,O)(O,O) 

AICvalue: -5.04795355019 

10226.85 

10195.15 

9998.05 

10113.70 

10331.60 

10480.60 

10564.05 

10692.30 

10618.25 

10806.50 

10596.40 

10605.15 

10696.20 

10767.65 

10728.41 

10747.41 

10766.45 

10785.53 

10804.64 

10823.78 

10842.95 

10862.16 

10881.41 

10900.68 

10920.00 

10939.34 

10958.72 

10978.14 

Figure 5. Actual and Forecast Graph of ARIMA (0,1,0) Model 
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Table 9. ARIMA (0,1,0) Estimation Output with DLOG(NSE_CLOSE) 

Dependent Variable : DLOG(NSE_ CLOSE) 

Method: Least Squares 

Date: 07 /01/18 Time:23:13 

Sample (Adjusted) : 6/08/2014 12/31/2017 

Included observations: 187 after adjustments 

Variable Coefficient 

C 0.001770 

R-squared 0.000000 

Adj. R-squared 0.000000 

S. E. of Regression 0.019237 

Sum squared residuals. 0.068830 

Log likelihood 473.9837 

Durbin-Watson Stat 2.066195 

Std. Error 

0.001407 

Mean Dependent variable 

S.D. dependent variable 

Akaike info criterion 

Schwarz criterion 

Hannan-Quinn criterion. 

Table 10. Model Selection Criteria Table 

Dependent Variable: DLOG{NSE_ CLOSE} 

t-Statistic 

1.258281 

Date: 07 /01/18 Time:23:13 Akaike Information Criteria 

Sample: 6/08/2014 12/31/2017 

Included observations: 187 

Model Logl AIC* BIC HQ 

(0,0)(0,0) 473.98365 -5.04795 -5.01339 -5.03395 

(0,1)(0,0) 474.10016 -5.03850 -4.98666 -5.01750 

(l,0)(0,0) 474.08806 -5.03837 -4.98653 -5.01737 

(1,1)(0,0) 474.89945 -5.03635 -4.96724 -5.00835 -5.04 

(0,2)(0,0) 474.41425 -5.03116 -4.96205 -5.00316 -5.04 

(2,0)(0,0) 474.29483 -5.02989 -4.96077 -5.00188 

(2,2)(0,0) 476.56655 -5.03279 -4.92912 -4.99078 

(2,1)(0,0) 475.17577 -5.02861 -4.94222 -4.99361 

(1,2)(0,0) 475.11389 -5.02795 -4.94156 -4.99295 

-5.05 
6 8 q s .s:: 8 s e: ~ ~ ~ ~ ¢ 8 
6' o. Ci. "I 8 
8 e: ~ - C!. 8 ci 

Prob. 

0.2099 

0.00177 

0.01923 

-5.05864 

-5.04137 

-5.05164 

s 
~ 
ci 

s 
~ 
<'!. 
~ 

actual and predicted values of series for the forecast length (22 observations) ranging from January 7, 2018 to June 
3, 2018. It is observed from the summary of ARIMA forecasting model that the software has selected the log of 
dependent variable after first differencing, that is, DLOG(NSE _ CLOSE) and the forecast length is 22 weeks. The 
software has estimated nine models and out them, the best ARMA model selected is (0,0)(0,0). The value of 
Akaike information criterion of this model is observed to be smaller than all other models tested. 

The Figure 5 is the graphical illustration and shows the level of accuracy of the selectedARIMA model, which 
exhibits the predicted performance of the NSE (NSE _ CLOSE) against the actual performance during the 
forecasted period. The line of forecasting of NSE _ CLOSE continues to rise during the forecasting period, that is, 
from January 7, 2018 to June 3, 2018. When compared to the forecasted performance, the actual performance of 
NSE _ CLOSE during the period from February 4, 2018 to March 18, 2018 is quite unsatisfactory. However, the 
market revived by the end ofMay 6, 2018, which continued till June 3, 2018. 

22 Indian Journal of Finance• August 2019 



According to Table 9, ARIMA (0, 1,0) is relatively the best model. The model gives a very small AIC of -5.05864, 
small BIC/SIC of -5 .04137, and comparatively negligible value of S.E. of regression of 0.019237. It is also 
observed from the model selection criteria table (Table 10) that out of nine models verified, ARMA(0,0)(0,0) is 
found to be the best model as its LogL, AIC, BIC, and HQ coefficients are smaller than the remaining 
eight models. 

Conclusion 

The main objective of this paper is to study the stationarity of the indices ofBSE and NSE and to forecast using the 
ARIMA model. For this purpose, the weekly closing indices of BSE and NSE are obtained from the website 
yahoofinance.com for the period from June 6, 2014 to June 3, 2018. TheADF test is administered to check for the 
presence of unit root to confirm the stationarity of index series. The results of the test confirm the presence of unit 
root and show non-stationarity. The ADF test has confirmed that the given time series are stationary at 
first difference. 

For the present work, ARIMA (0, 1,0) model is chosen as the top model from nine different models because it 
gratifies all the norms of goodness of fit statistics as the other eight models have not satisfied such criteria. This 
best candidate model is selected for making predictions of BSE _ CLOSE and NSE _ CLOSE for the period ranging 
from January 7, 2018 to June 3, 2018 using the weekly data ranging from January 6, 2014 to December 31 , 2017. 
The study also makes a comparison between predicted and actual performance of BSE _ CLOSE and NSE _ CLOSE 
during the sample period. The results of the best fitted model highlight the strength of ARIMA model to forecast 
the BSE _ CLOSE and NSE _ CLOSE satisfactorily on a short-term basis and would guide the individuals to select 
gainful investment options. 

Research Implications 

The findings of the study have the following implications for investors, researchers, and the academic fraternity. 

(1) The study has elucidated the procedure for testing the stationarity in time series data using the Augmented 
Dicky - Fuller test and correlogram analysis. The study has enlightened the criterion and modus operandi for 
selection of the best ARlMA model and the methodology for forecasting BSE _ CLOSE and NSE _ CLOSE. This 
will aid the researchers and academicians to carry out further research. 

(2) The forecasting of market indices (BSE _ CLOSE and NSE _ CLOSE) and comparision of forecast and actual 
performance will assist the investors to know the market trends, risk analysis, and to take investment decisions. 

Limitations of the Study and Scope for Further Research 

The ARIMA model has few constraints regarding the exactness of forecasting because of its wide usage for short
run predicting the values in the time series to notice the minor variations in the data. In case of erratic variations in 
the data set (too large variations) due to change in government policies or the structural breaks in economy 
( economic instability) etc. , it turns out to be intricate to capture the accurate trend. Hence, this model turns out to 
be useless to predict long-run changes. Moreover, the forecasting using the ARlMA model would depend upon the 
hypothesis of linearity in historical data, however, there is no confirmation that BSE _ CLOSE or NSE _ CLOSE are 
linear in nature. 

Forecasting of BSE_CLOSE and NSE_CLOSE using ARIMA model was made with the fundamental 
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supposition that the given series follow an absolutely linear model. Non linear prediction methods using latest 
softwares may also be considered with less error (white noise) term. Further, the study may be extended to 
multivariate time series forecasting, that is, predicting a dependent variable using more than one independent 
varaibles. In future, similar studies may be conducted for forecasting various economic variables, that is, gold and 
silver prices, curency exchange rates, individual stock prices, production from agriculture and industry, electricity 

consumption, export performance of various industries, etc. 
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