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Abstract. Many imaging systems involve a loss of information that 
requires the incorporation of prior knowledge in the restoration/ 
reconstruction process. We focus on the typical case of 30 recon­
struction from an incomplete set of projections. An approach based 
on constrained optimization is introduced. This approach provides a 
powerful mathematical framework for selecting a specific solution 
from the set of feasible solutions; this Is done by mmimizmg some 
cnteria depending on prior densitometric information that can be 
interpreted through a generalized support constraint. We propose a 
global optimization scheme using a detenninistic relaxation algo­
rithm based on Bregman's algonthm associated with half-quadratic 
minimization techniques. When used for 30 vascular reconstruction 
from 20 digital subtracted angiography (OSA) data, such an ap­
proach enables the reconstruction of a well-contrasted 30 vascular 
network in comparison with results obtained using standard algo­
rithms. © 1997 SPIE and IS&T. [S1017-9909(97)00404-2) 

1 Introduction 

In many computer imaging applications, such as medical, 
astronomical, or geophysical imaging, the measured data 
result from the transformation of an unknown physical pa-
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rameter. The recovery of the physical parameter from the 
measured data, called the inverse problem, is ill-posed 
since Hadamard's conditions are not satisfied. more pre­
cisely: 

I. The existence of a solution is not mathematically 
guaranteed. 

2. The solution, when it exists, is unstable with respect 
to the noise due to the noncontinuity of the inverse 
mapping. In the discrete case. this noncontmull) re­
sults in an ill-conditioned inverse matrix. 

3. The solution may be nonunique. This situation arises 
when dealing with an incomplete measured data set. 
which leads to a nonbiunivoque transformation be­
tween the observed data and the map of the physical 
parameter to be reconstructed. The lack of data re­
sults in the existence in the Hilbert space of a null 
space about which the available data do not provide 
any information. In this case. corresponding discrete 
operators are singulars. 

ln this paper, we exclusively address the nonuniqueness 
problem resulting from an incomplete data set. This prob­
lem is a key problem in many computerized tomographic 
(CT) applications whenever projection data are limited in 
number and possibly in range of the viewing angle. 

We are interested in the specific application of 3D vas-
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cular reconstruction. The principle consists of recovering 
the 3D image of a blood vessel network from a set of 2D 
digital subtracted angiography (DSA) data acquired during 
a rotation around the patient. In DSA, x-ray projections are 
acquired before and during injection of a contrast agent into 
the vessels. Subtracting both images enhances the visibility 
of vessels by removing bony structures. The short time of 
stability of the contrast agent does not allow the acquisition 
of a large number of projections. In addition, a circular 
acquisition trajectory of the imaging system does not fulfill 
the data completeness requirement for 3D reconstruction. 1 

In this paper, the problem of an incomplete data set in 
3D vascular reconstruction is addressed by introducing 
densitometric prior information. This information is used in 
a functional to be minimized. In Section 2, the problem of 
the nonuniqueness is mathematically addressed in detail 
and is reformulated as missing data in the Fourier domain. 
In Section 3, the constrained optimization framework is 
introduced for selecting an element from the null space by 
minimizing a specific functional. Bregman' s minimization 
algorithm is described in detail and its limitations are dis­
cussed. In Section 4, the method and the algorithm that we 
propose are developed. A detenninistic relaxation algo­
rithm based on half-quadratic minimization is proposed for 
handling a wide class of criteria to be minimized. In Sec­
tion 5, the efficiency of the algorithm is discussed using 
synthetic and real data. 

2 Problem of Nonuniqueness 

A 3D discrete image of size 17 is represented by a real­
valued function x defined on some domain fl. This domain 
is partitioned into a finite number of volume elements (vox­
els) labeled in an arbitrary way from I to 17. Assuming that 
x is constant within each voxel, function x can be ex­

pressed as x= I) 
1
x)

1
, where 1

1 
denotes the indicator 

function of the j'th voxel and xis represented by the vector 
[x 1 , ••• ,x,,]7". In x-ray tomography, x corresponds to the 
attenuation coefficienL to be recovered from the available 
data consisting of line or strip integrals along each ray path. 
These latter measured values are denoted by y 
= [y 1 , ··· ,Ymf, where m denotes the number of acquired 
integral rays. 

missing cone 

(a) 

angular range 
of acquisition 

Object Space 

projection data T F1 D 

in 8 direction 

Fourier Space 

slice in 91. direction 

Fig. 1 Projection theorem ( TF10 stands for the 1 D Fourier trans­
form). 

Within this framework, the CT problem can be stated as 
follows: given a set of measurements y, {i= l, ... ,m}, re­
cover the "best" estimate x of the attenuation function x. 

The feasible set is identified with the set of vectors sat­
isfying the image formation equations: 

Hx=y, (I ) 

where H is the 11 X m projection matrix whose i'th row is 

formed by H, . 
When the projections are limited in number or in angular 

range, the projection operator H becomes singular, and its 
associated null space, ker{H}, defined by the eigenvectors 
associated to null eigenvalues, is not reduced to the null 
vector. In other words, this means that nonzero vectors x 
exist whose projections are null. 

This situation is well illustrated using the projection or 
Fourier slice theorem (Fig. 1 ), which states that the Fourier 
transform of the projection data in the direction 0 equals the 
slice of Fourier transform of the object in the direction 
orthogonal to 0. Thus, projection data that are restricted in 
angular range or in number lead to missing sectors in the 
Fourier transform of the image (Fig. 2). 

If the missing sectors are not filled , deformation of large 
objects, intensity underestimation of high frequency objects 
and undersampling artifacts will result from inverse trans­
formations . Klug and Crowther2 showed that a complete 

of acquired projec tio ns 

missing secto rs 

(b) 

Fig. 2 Typical representation of an incomplete data set in the Fourier domain for a limited angular 
range (a) and for a reduced number of projections with a regular and sparse angular sampling (b). 
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data et (i.e., satisfying Shannon's sampling constraint) re­
quires ( 1r/2)N projections equally distributed over 180 deg 
for a reconstruction of size N 3. He observed practically that 
this constraint can be relaxed to N directions without lead­
ing to striking undersampling artifacts. In vascular imaging, 
such a condition cannot be satisfied; the vessels have a 
small size (typically from I to IO voxels of diameter) and 
require high reconstruction resolution (typically 5121) 

whereas the number of projections is limited to a few tens 
due to the speci fie acquisition procedure. 

One key aspect in 3D reconstruction from incomplete 
data consists of selecting a "suitable" element of ker{H} 
(i.e., a component on the missing Fourier domain), possibly 
depending on prior information. 

Standard inversion methods, which provide the minimal 
norm solution or generalized inverse solution, cannot take 
into account a missing sector component since this specific 
olution possesses a zero null-space component. Hence. the 

recovery of such a component requires spectrum extrapola­
tion techniques. 

Spectrum extrapolation was first addressed by 
Gerchberg3 by using the Paley-Wiener theorem, which 
claims that the Fourier transfor.m of an object is uniquely 
determined by its values on a compact domain fl of the 
Fourier space. Assuming that the unknown function \ van­
ishes outside some known bounded domain denoted by 
supp(x). Gerchberg3 and Papoulis4 proposed an iterative 
back and forth algorithm between object and frequency 
space to analytically extend the known spectrum onto the 
missing domain. Let us denote by 1,upp< , i the domain indi­
cator in the object space. 111 the operator that sets to zero 
the known domain fl in the Fourier space and .r0 the known 
Fourier spectrum on n. Then Gerchberg-Papoulis's algo­
rithm can be expressed in the Fourier space by the iterative 
equation: 

(2) 

where TF stands for the Fourier transform. This equation 
can also be written in a convolution form, which provides a 
clear understanding of the extrapolation mechanism: 

(3) 

This equation shows that the extrapolation in the Fourier 
domain results from the successive convolution of spec­
trum of the current estimate by the Fourier transform of the 
support constraint sinc,upp· This approach has been adapted 
to 2D reconstruction from projections,5

·
6 but it is of limited 

interest in many imaging procedures since it requires the 
knowledge of the support of the object to be recorn,tructed. 
Moreover, even if the exact support constraint is known, 
this procedure cannot provide a significant extrapolation in 
such a case as vascular reconstruction. Indeed. the 3D vas­
cular image is composed of a sparse. highly contrasted 
structure (the vascular network) surrounded by a low den­
sity wide background corresponding to the opacification of 
microvessels. This background makes it necessary to use 
too large a support (in comparison to the vascular network) 
to provide a significant extrapolation. This limitation can be 
well understood through Equation (3) in which the 
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convolution/extrapolation kernel sinc,upp reduces to a 
Dirac-like kernel when using such a wide support. On the 
other hand. neglecting the background by using a support 
smaller than the background results in high density point­
wise artifacts due to local concentration of the density that 
cannot be replaced in its true position (i.e., outside of the 
imposed support). 

Another way to handle incomplete data was investigated 
by using a maximum-entropy method which. quoting 
Jaynes,7 selects in the feasible set the "maximally noncom­
mittal solution with regards to missing information." In CT 
imaging, two popular algorithms provide such a solution: 
MART and MENT. MART (multiplicative algebraic recon­
struction techniques) was initially proposed by Herman 
et al.8 and its convergence property was established by 
Lent.9 MENT (maximum entropy 10 performs the optimiza­
tion scheme in the dual space in the sense of the Lagrang­
ian formalism. These two algorithms have been extensively 
used for reconstruction from a few projections and have 
demonstrated their effectiveness. 11 

In the following, we focus on the constrained optimiza­
tion techniques, which we show to be closely related to the 
notion of support. 

3 Constrained Optimization Methods 

3.1 Optimization Framework: Lagrangian Formalism 

The optimi,ation problem can be mathematically stated as 
follows: 

l 
min F( \) 

~-ubject to (s.t.) Hx=y, 
(4) 

where F is the criterion to be minimized for selecting a 
specific element in the feasible set of solutions. 

For the optimal solution, the Lagrangian operator: 

L(x.>..) = F(x) + >.. T(Hx- y ). (5) 

should be minimal (>.. e W denotes the Lagrangian param­
eter). Hence, each first partial derivative of L should equal 
zero, leading 10: 

(6) 

The equation Hx = y corresponds to the image formation 
model, whereas V F(x) = - HT>.. expresses that the gradient 
of the criterion should belong to the range space of H7 . 

This means that, considering the optimal solution .r, the 
component of ~ FU) on the null space is zero. Indeed, if 
~ FU) has a nonzero null-space component, it is possible 
to find a solution that satisfies Hx = y with a lower value of 
the criterion. 

This property, which shows the advantage of the con­
strained optimization approach. is directly exvloited in the 
row-action algorithm proposed by Bregman.'· 
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3.2 Bregman 's Algorithm 

Let S be a nonempty. open and convex set such that its 
- -

topological clo,ure S. i, included in P (SC:::: ,{). Let u, ,I\· 
sume that the criterion F ,atisfies the fol Im\ mg condition,: 

• Criterion F ha, continuous fiN partial derivative, at 
any point , e:: S. 

• Criterion F i, a strictly convex function on S. 

• Criterion F i, a continuous function on S. 

Starting from F. Bregman derived the function D of two 

variables (.r,:) from SXS into Ras follow,: 

(7) 

\\ here ( ... ) tand, for the usual inner product in the 
11-dimensional I:.uclidean space Rn. Then. the D-projection 
, * of a point , onto a set n is uniquely defined by: 

D(.1*.1)= min D(: .. 1). 
:e n ns 

(8) 

If n denotes the h)perplane defined b} (H, ., )=y, . then 
Equation (8) becomes: 

where °JI. being the unique real number such that: 

(H, .. ,*)=y,. 

(9) 

Equation (9) explicitly use, the property that the gradient of 
the cnterion belongs to the range-space of H1

. 

To find the solution of the global optimization problem. 
Bregman proposed an iterative algorithm that performs the 
successive D-projcctions onto the hyperplane associated 
with each row of H: 

initiali,ation: , 0 
E snR{H1

} 

(R{H7} stand, for the range-space of H1 
). 

iterative step: 
( I 0) 

cyclic control ,equence: ik=k[mod(m)l+ I 

where III is the ro\, number of H. 

Bregman showed that the sequence of approximation { ,1.} 

comcrges toward the unique solution of Equation (4). pro­
\ ided that F ,at1,fie, the condition, pre,iousl) mentioned. 

Using the Bregman·s algorithm. two ,pccilic expres­
sions of the criterion F arc of a great interest. The first case 
corresponds to the norm projection and is associated with 
F(x) = I /2Jj., If and S = H". The D-projection operator cor­
responds to the orthogonal projection. In this case. Breg­
man·, algorithm recovers the standard ART (algebraic re-

construction technique) algorithm.8 which i, known to 
com·crge to the minimal nonn solution provided that , 0 

belongs to the range ,pace of Hr. Under these conditions. 
Equation ( I 01 )' ield, the fol Im, ing iterative equation: 

initialization: 

iterative ,tcp: 

The second case is associated with F(.1) = It 1x1 In 11 

and S = H ". The associated D-projection can be inter­
preted as an entropic projection leading to the following 
iterative scheme: 

1mtialization: , 0
-,, 

1 

[ 

,1.' 1 =.11. exp(H: °JI.) 
iterative ,tep: 

1 

°JI. such that ( H , 
1

• , 1. 
1
) =-''ii· 

Under the vef} specific assumption that all the elements of 
H equal O or I. the iterative equation can be written: 

This iterative scheme is equivalent in this specific case of a 
MART algorithm given by9 

The assumpton of H being composed only by O or I ele­
ments corresponds to an oversimple projection formation 
model in \\ hich h ,

1 
I if the i · th ra) intersects the J° th 

voxel and h,
1
=0 othern,ise. 

Bregman·s algorithm presents several advantages: 

• For some particular expression of the criteria F. this 
algorithm has a form similar to standard tomographic 
algorithms such as ART or MART. 

• RO\\•action algorithms ha\e demon,trated their effec 
ti\eness for handling huge and spar,e matrices and for 
their convergence rate. Although the final conver­
gence generally requires an infinite number of itera­
tions. an acceptable approximation can u~ually be 
found for finite (and rather small) values of k. 

• It is formulated for an arbitrary cxpre~sion of the cri­
teria prO\ ided that the function f is strictly convex 
and continuously differentiable. 

e\·ertheless. even 1f Bregman· s conditions on the criterion 
are compatible with a large class of functions. the algorithm 
is tractable only for the two expressions of F already de­
,cribed since Equation ( 10) requires a gradient inversion. 
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To overcome this drawback, we propose in the next sec­
tion to combine Bregman's algorithm with a half-quadratic 
minimization approach that has been de\·eloped within the 
Bayesian framework. 

4 Half-Quadratic Optimization 

Half-quadratic optimization initially proposed by Geman 
and Reynolds. 13 has been extensively used in the Bayesian 
framework. 14 The principle consists of introducing an aux­
iliary variable to convert the initial nonquadratic optimiza­
tion problem to a sequence of quadratic optimization prob­
lems that can be handled by standard algorithms. This 
approach is based on the Geman and Reynold's theorem 
generalized by Charbonnier et al. 15 by relaxing the assump­
tion of an horizontal asymptote on the criteria. 

4.1 Geman and Reynold's Theorem 

Let us assume that F(x) is an even real-valued function 
satisfying the following properties: 

F'(x) 
lim -?-= M <+x. 

+ _x ,-o 

F'(x) 
lim --=N O<N<M, 

1-+x 2.r 

F'(.r) 
is a continuous and strictly decreasing 

2x 

function on ]O+ x[. 

Then, a strictly convex and decreasing function '1' defined 
on [NM] exists such that F(.r) can be rewritten as: 

F(x) = min {bx 2+ '11(b)}. (II) 
N,r;;,1>,;M 

Moreover, the minimum. minv, b"M{hx~+ '-l1(h)} , is 
reached for: 

- F'(x ) 
b=-2-· 

X 
( I 2) 

In the extended version proposed by Charbonnier. N = 0 is 
possible, but in the following. the derivative of the criterion 
F must be nonzero. Hence. we restrict the class of admis­
sible functions to those not having a horizontal asymptote. 

4.2 Half-Quadratic Minimization 

Now, let us consider the initial problem of Equation (4) for 
a criterion F(x) = 2.,F(x,) satisfying the preceding condi­
tions. By abuse of notation. we identify the global vectorial 
criterion and the real function acting on each component of 
the vector x. The reconstruction problem can be reformu­
lated as: 

l minL min {h ;xf+ 'l'(b;)} 
I I N-> h, ... \f 

s.t. Hx=y. 

(I 3) 
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Introducing B a diagonal matrix with entries b,, and a 
real-valued function 'I'( B ) = z.,'l'(b;) the problem is writ­
ten: 

\ 

min min{.rTB.r+'l'( B)} 
l B 

s.t. Hx=y 
( 14) 

The system of Equation ( 14) can be solved by using an 
alternating minimization scheme with respect to the inten­
sity image x and the auxiliary variable B. The minimization 
with respect to B can be performed analytically using 
Equation (12) and Bregman's algorithm can be used for the 
minimization with respect to x since the functional is qua­
dratic in .r. This leads to the fo llowing algorithm: 

initialization: .r0 =0. 

iterative step: 

b", 

minimization on B, x being fixed to x"- 1
• 

i= l. ... ,111. 

minimization on x, B being fixed to B" 

initialization step: x0 = 0 

iterative equation: 

( I 5) 

If S" denotes ( B") 1 (O<N,;:;,.b;,;:;,.M \Ji) . 

( 16) 

Hence. we have: 

( I 7) 

Concerning the preceding algorithm note that 

• Since x0 = 0. b0 is uniform and the first iteration 1s 
equivalent to an estimation using the standard ART 
algorithm. 

• After each estimation of the variable an, the current 
estimate .r should be reset to zero to satisfy Bregman· s 
initial conditions. 
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• The \ ariahle .1
11 = I /h" acts as an indicator of the sup• 

port of the obJect. This can be shown by taking the 
augmented objecti,e function F*(1.S)=~ 11.1 ,.1

2 

+'¥( 1/s,). \\hens hasalO\\ value. 1 should he near 
0 10 minimi;e F . whereas the higher .1,. the more 
free x, is. 

• The support S" computed after each convergence of 
the Bregman·s algorithm is related to the density by 
.1( 1,)= 1/h, - 2 ,,IF'( 1,). This function docs not need 
to be normali,cd s111ce it is implicitel)- done in Equa­
tion ( 17). 

• Here S Hf defines a nonuniform backprojection or a 
backprojcction on a "fuzz) .. support defined by the 
membership function s( r) = 2 1 / F' (.1). This operator 
satisfies the conditions stated by Herman 16 

10 define a 
backprojectl()n operator. i.e.: 
- A ray should contrihute to those pixels ,, hich II in· 

tersects and not to others. 
- The contrihution of the i'th ra) to a pixel should be 

proportional 10 y, ( the measured data for the , · th 
ray). 

- The contribution of the i'th ray 10 the j'th voxe l 
should be proportl()nal to h 

The half-quadratic algorithm alternates successively a 
support-driven reconstruction and an estimation of the sup­
port using the prior densitometric information. This scheme 
overcomes limitations of Gerchberg-Papoulis algorithm. 
First the unknown support is progressively estimated dur­
ing the reconstruction process using densitometric prior in­
formation by the intermediate of the support function. Sec­
ond. the use of a nonbinary support enables us to have a 
wide support 11 hose Fourier transform may differ from a 
Dirac kernel and " ,, idc enough 10 pro, ide a significant 
extrapolation. 

4.3 Convergence Analysis 

4.3.1 Convergence of the global critenon 

Let us note that ./(8 . .r) 11 8 .r+'l'( 8 )=~,h,1~+'1'(h,). 

.1,, = J ( 8 11 .x") . 

The minimization on 8 at step 11 leads to: 

Since 1
11 

results from the minimiLation of./( 8 " .. r) on x. we 
have: 

J(8" .. 1"):e;;J( 8 11 .1J \11 such that H1=y. 

Thus 

J n-1 -J ,,=J(8 "- 1 ,Xn- I )-J(B",x") 

=J( 8 " I ,Xn-1 )-J(B" ,Xn- I) 

l\foreover because ./,, is poslltl'e. we hal'e ./ 11 1 :e;;J, :!',, 0. 

11h1ch ensures the convergence of./,,. 

4.3.2 Convergence of the auxiliary variable 

Let us now consider the real function g(h)=h( .111
/ 

+ 'I'( h) ,, here h stands for an1 component of the diagonal 
matrix 8 . Using Ta) )or's theorem. we can ,, rile: 

g(h" 1)=(/(h")+(h" 1-h")l/'(h") 

+j(h" 1 h") 2g"(a) 

with a E [h" 1.h" ]. Considering mm that h" results from 
the minim11ation of l/ . we have g ' ( h") - 0. Then: 

Moremer. g"='l1 " and it exists c -. o such that '1'" ·c 

(consequence of the strict convexity of '11 ). Thus 

and ,ince: 

g(h,, I) 1/(h,,) J(h" 1 
• .1 11 )-J(h". 1 11

)"""./,, 1 .I,,, 

we have: 

C 
() ~ :,- ( h" 1 - h")' $ ./,, I -J n • 

which shows the convergence of (h"). 

4.3.3 Convergence of the algorithm 

Let us first remark that .1 11 remains bounded s111ce: 

+ x >.10 --e,J ,,;;;. ~ h;'(.1;1 
)
2 + 'JI( h" )~ N \.1

111\2. 
I 

Consider now the pair ( 8 11 ,.r") obta ined after the mini­
mirntion in .1. Using Lagrange optimality Equation (6). it 
exi\t~ X." ~uch that: \ F(.111

) = 8 n.r" H1 A//. I lence. 8 1/1" 
hclong~ to the range ~pace of H and considering that .111 and 
1" 1 differ only hy their null-space component. we hal'e · 

(8 "x"- 8 " 1111 1. i "-.1"•1)=0. 

Introducing 8 11 1111 leads to: 
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Criterion Expression Support Function 

f1 ""' X
2 S1=1 

f2=lxl"1 ~a< 2 2Ix12 • 
~=--

a 
Convex functions 

f3=Iog[cosh(x)] X 

Sa= tanh(x} 

(4=2{ \'"i°+?- 1) 54"' (1 +x2) 112 

Nonconvex functions f5=Iog{1 +x2) S5= 1 +x2 
f6= 1 - exp( -x2) S5=exp(x2) 

x2 
f1"' 1+7 

S7=(1 + x2) 2 

( ( 8 11 
- 8 11 + 1 )x" ,x" - x".,. 1) + ( 8 11 + 1 (x" - x" + 1) ,x" - x" + 1) 

=O. 

Since llx"II is bounded and 8 11 + 1 is minored, it exists a and 
/3 real numbers which are strictly positive. such that: 

Q,.; /3llx" - x"+ 'II,.; all8"- 8 "+ 'II -

Then, the global convergence of the algorithm results from 
the convergence of 8 11

• 

In conclusion, if F is a convex function , the algorithm 
converges to the unique solution of Equation (4). If F is a 
nonconvex (but agrees with the conditions stated by the 
Geman and Reynolds theorem), it is convergent to a sta­
tionary point (eventually a local minima) of the initial prob­
lem. This condition can be summarized by "if the support 
function is increasing and bounded, the global convergence 
is guaranteed." We should observe that Geman and Rey­
nolds' conditions imply that the support function is never 
zero, but this condition can be relaxed if we specify that 
when s; = I lb; is zero, the associated voxel x; remains O for 
all further iterations. Then. the estimate x" and the criterion 
remain bounded and all the proof already developed stands. 
The only constraint is then to initialize the support at the 
first iteration to a nonzero uniform value. For very small s,, 
we should note the convergence of the algorithm is not 
affected since s appears both in the numerator and the de­
nominator of Equation ( 17). 

4.4 Examples of Criteria 

The key of the optimization problem relies on the choice of 
the criteria F, which determines how the intensity of each 
voxel is penalized. For instance, choosing the classic qua­
dratic criterion F(x)=x2 will cause high intensity to be 
heavily penalized and therefore will result in low contrast 
images. The corresponding support function does not de­
pend on x and the algorithm tends to spread the density 
over every voxel. By choosing a function F whose behav­
ior is linear, high intensity values will be less penalized and 
the corresponding support function is proportional to the 
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4 

3 

2 

1 

2 4 6 8 

Fig. 3 Behavior of the criteria. 

estimated density. A horizontal behavior of the criteria will 
favor high values and will tend to hyperconcentrate the 
density. 

A brief review of the criteria proposed within the Baye­
sian regularization framework is given in Table I and in 
Figs. 3 and 4. The criteria / 5 , / 6, and h do not exactly 
fulfill the conditions required since their associated support 
functions are not bounded. To overcome this drawback, an 
extra quadratic constraint ax2 can be added to the initial 
criterion to introduce a saturation in the support function, 
which is then defined by: 

I 

s(x)= [F'(x)l2x]+a· ( 18) 

If the weighting factor a is chosen small enough, the sup­
port function still behaves like the one given in Table I for 
the range of density used. Nevertheless, when the support 
function increase too rapidly-such as for s 5 to s7- the 
reconstruction appears to be very unstable and the precision 
of the convergence for the minimization in x seems to be 
very sensitive and the weighting factor a should not be 
negligible. For instance, function h = x2/(l + x 2 ) is stabi­
lized by adding ax2

. The associated support function is 
proportional to: 

5 

4 

3 

2 

1 

0.5 1 1.5 2 2.5 3 3.5 

Fig. 4 Behavior of the support functions. 

4 
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4.5 Taking Noise into Account 

To take into account the data errors (noise. roundoff error, 
etc.), the observation equation is often relaxed as follows: 

Hx= y+ c, ( 19) 

where € represents the error vector. A regularizing proce­
dure requires further prior knowledge about the noise. 

Assuming that the noise follows a Gaussian distribution, 
a quadratic constraint on the noise € can be incorporated 
into the noiseless criterion to form the following problem: 

l I ' ~_i,n F(x)+-; llcll-

s.t. H.x-/c=y 

(20) 

where a acts as the standard deviation of the noise. Using 
the extended variables :: 1 =[x 1 , ... ,x11 ,€1 , ... ,€,,,t and the 
matrix [ HI - /] defined by: 

0 

0 

.. h,,,,, 0 

0 

-I 

-I 

0 

0 

0 

0 

-I 

the previously developed approach can be applied and the 
internal minimization on x using Bregman algorithm leads 
to the following iterative scheme: 

initialization step: 

iterative equation: 

This section shows the link with Bayesian regularization 
and provides an approach for applying more complex noise 
model by the use of nonquadratic criteria on €. Note that 
taking noise into account is of a great importance since 
spectrum extrapolation implies the restoration of high fre­
quency components. i.e .. very unstable components. 

5 Results 

In this section, the developed algorithm is applied to simu­
lated and real data. and the results are compared. We are 
mainly interested in the 30 vascular imaging in which the 
limited number of projections leads to a densitometric un­
derestimation of small blood vessels and undersampling ar­
tifacts. The first section deals with different expressions of 
the criterion compared to standard algorithms such as ART 
or MART on simulated data. In the second section, experi­
mental results on clinical data are shown and discussed. 

(a) (b) (c) 

(d) (e) (f) 

Fig. 5 (a) Original object, (b), ART reconstruction, (c) MART recon­
struction, and (d), (e) and (f) respective Fourier transforms of (a), (b) 
and (c). 

5.1 Simulated Data 

To represent a typical highly contrasted vessel surrounded 
with a low density background, we simulated a 30 image 
of a cylinder (density I 00) of diameter 6 voxels with a 
background designed by an other cylinder of density 5 and 
diameter 200 voxels. For this simulation. six projections 
equally distributed over 180 deg were used. 

Figure S(a) shows a 20 axial cross section of the origi­
nal object and Figs. S(b) and S(c) the reconstructions ob­
tained using ART and MART algorithms. In Figs. S(d). 
S(e). and S(f), the 20 Fourier transform of images of Figs. 
S(a), S(b) and S(c) are displayed. 

Using ART [Fig. S(b)]. the central spot is spread over 
six line-artifacts corresponding to the six projection direc­
tions. This results in a densitometric underestimation of the 
central spot. Figure S(e), displaying the Fourier transform 
of the ART reconstruction. illustrates the projection theo­
rem (see Section 2) and demonstrates that linear methods 
are unable to handle null-space components. 

Using MART [Fig. S(c)]. the cylinder is better recovered 
with less dense undersampling artifacts. This is due to the 
nonlinearity of MART, which enables extrapolation of the 
missing sectors in the Fourier space. Nevertheless, some 
artifacts remain. To remove them. we propose to use the 
constrained optimization approach already developed. The 
problem that arises now is how to choose the criterion. 

We tested various criterion expressions; the first one 
corresponds to function/ 4 of Table 1, the second to func­
tion / 7 and for the third a quadratic stabilizing term 0. lx 2 

has been added to h. Moreover, each of these functions 
have been rescaled by normalizing x by 30. The criteria / 4 

and h have been chosen since they exhibit typical behav­
ior. The criteria h and h lead to results similar to those 
obtained with / 4 , whereas / 5 and / 6 present an horizontal 
asymptot like h. 

The first criterion expression, / 4 [Figs. 6(a) and 6(b)] 
exhibits an asymptotic behavior similar to that in the case 
of the entropic constraint. The reconstructed object as well 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 6 Reconstruction using (a) f4 , (b) f7 , and (c) f7 +0.1x2; (d), (e) 
and (f) respective Fourier transforms of (a), (b) and (c). 

as the Fourier transform are very similar to those recon­
structed by MART. 

The second criterion presenting a horizontal asymptote 
no longer penalizes high intensity objects (i.e., intensity in 
the range of the plate of the criterion). This gives rise to 
very unstable reconstructions with overshots and osci lla­
tions [Fig. 6(b)]. The density is so concentrated that "nega­
tive" artifacts (compared to the mean level) appear in the 
background. 

To overcome this instability. the third criterion was built 
by adding a "stabilizing'· quadratic term to the previous 
one. The recovered object [Fig. 6(c)] is very similar to the 

(a) (b) 

(f) (g) 

(c) 

(h) 

original one with only small oscillations of the density. Its 
Fourier transform [Fig. 6(f)] is quite close to the original 
one [Fig. 5(d)] compared to the others. 

To test the algorithm with a limited-angle acquisition, 
we apply it for the reconstruction of a large cylinder whose 
projection set is composed of six projections equally spaced 
on 90 deg. The results are displayed in Fig. 7. Compared to 
the original object [Fig. 7(a)], the ART reconstruction [Fig. 
7(b)] shows the limitations of linear methods, which arc 
also clearly revealed in the Fourier domain [Fig. 7(g)]. The 
simple use of a positivity constraint [Figs. 7(c) and 7(h)] 
enable us to suppress the negative artifacts, which results in 
the restoration of a far better cylinder. But the deformation 
of the object remains. This is well illustrated in the Fourier 
domain [Fig. 7(h)]. where the positivity constraint provides 
an extrapolation only in the neighborhood of the known 
data and cannot lead to a significant extrapolation onto the 
missing sectors. Note also that the positivity constraint is 
useless when a nonzero background exists, such as in the 
previous simulation. 

Using MART [Fig. 7(d)], the original object is much 
better recovered and Fig. 7(i) demonstrates the spectrum 
extrapolation performed using the maximum entropy crite­
rion. Some wave-shaped artifacts appear in the recovered 
missing sector. 

Using the same criteria as for Fig. 6(c), a better isotropic 
recovery of the object with sharper edges is performed. The 
analysis of the Fourier transform [Fig. 7U)] shows the isot­
ropy of the reconstruction with the two recovered sectors 
being a little less dense than the known sectors. Neverthe­
less, this demonstrates the power of the use of the devel­
oped algorithm with criteria including densitometric priors 
for the recoverage of simple shape object. 

(d) (e) 

(i) 0) 

Fig. 7 (a) Original object, (b) ART reconstruction of (a), (c) ART reconstruction of (a) with a positivity 
constraint, (d) MART reconstruction of (a), (e) reconstruction using the same criteria as for Fig. 6(c), 
(f), (g), (h), (i), and 0), the respective Fourier transforms of (a), (b), (c), (d), and (e). 
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(a) (b) (C) 

(d) (e) (I) 

Fig. 8 (a) ART reconstruction, (b) MART reconstruction, (c) reconstruction using criterion f7 + 0.1 x2. 
(d), (e) and (f). Detail of an axial cross-section of, respectively (a), (b) and (c). 

5.2 Application to Clinical Vascular Data 

In the previous section. various criteria adapted to the re­
construction of small objects with high density were intro­
duced and their influence on the reconstruction were inves­
tigated and compared to standard algori thms. The same 
approaches were applied to clinical vascular data. The data 
set consists of 18 2O-DSA equally distributed over 180 deg 
and the reconstructed images have a sin of 2563 . Results 
obtained using ART. MART and the conmained optimiza­
tion approach (with the criterion / 7 + 0. I.r2) are respec­
tively displayed in Fig. 8. These results raise the following 
comments: 

I. The small vesseb are enhanced using nonquadratic 
criteria [compare Fig. 8(a) LO Figs. 8(b) and 8(c)]. 
The constrained optimization with criterion f?O. I.r 2 

tends to concentrate the density on the vessels: this 
appears either through the increase of the vessel den­
sity or through the decrease of the background mean 
level. The enhancing effect can also be observed on 
the axial cross-section view: see, for instance. the 
small vessels labeled I in Fig. 8(1). 

2. The undersampling artifacts are reduced using the 
proposed algorithm. This appears clearly in the cross-

section: looking at the area labeled 2 in Fig. 8(f): the 
background is more homogenous than on Figs. 8(d) 
and 8(e). 

3. Nonquadratic criteria that Lend Lo concentrate the 
density to enhance the contrast of small vessels are 
much more noise sensitive. This appears Figs. 8(b) 
and 8(c), which present noisy structures in the bottom 
right. Using ART [Fig. 8(a)]. the data errors arc 
spread unifom1ly over each ray. whereas the errors 
are concentrated in a few voxels by the other algo­
rithms. The small spot labeled 3 in Fig. 8(f) corre­
sponds Lo such concentrated noise. 

This effect of density concentration is enhanced by the 
quadratic behavior of the support function in the range of 
the values corresponding to the background density. Hence. 
to suppress this effect we built an ad hoc support function 
whose analytical form is given in Appendix A and it'> be­
havior is shown in Fig. 9 for 2 couples of parameters. Note 
that the criterion corresponding to this support function 
cannot be analytically expressed. This function is com­
posed of a first uniform part (.r ,s;; k,mnl- whose density range 
correspond to the background (parenchyma) level. Then. 
after a quadratic transition part. the support function in-
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Fig. 9 Support function for 2 couples of parameter ( km,n ,kmaxl: 
(0.0002, 0.008) and (0.001, 0.01 ). 

creases in a linear way up to a value k max from which the 
function begin to slowly saturate. The density range of this 
linear portion is chosen to correspond to the density of the 
small vessels, which are usually underestimated, and the 
k max value is fixed to the nominal attenuation value of a 
opacified vessel. The progressive saturation is performed to 
ensure the convergence of the algorithm. 

Figure IO compares the results obtained using this func­
tion to those obtained with ART on a 5123 reconstruction 
from 36 projection equally spaced on 180 degrees. The 

(a) 

(d) 

(b) 

(e) 

maximum intensity projections (MIP) as well as the cross­
sections are displayed within the same dynamic range. 
First, we note the enhancement of the density of the vessel 
using the ad hoc function. This is clearly visible around the 
aneurysm in the central part of Figs. I 0(a) and I 0(b). We 
also notice the lower background value in Fig. IO(d). On 
the cross-sections [Figs. I 0(b), I 0(c), I 0(e), and I 0{f)], the 
small vessels appear far better contrasted and the back­
ground is wider with a lower and more uniform value. 
Compared to the results obtained with criteria h + 0. lx2, 

we notice that the noisy aspect has disappeared by impos­
ing a flat behavior to the support function in the density 
range of the background. 

ln Fig. 11, results obtained with a limited-angle acquisi­
tion are displayed. The data set consists of 18 projections 
distributed on 120 deg. The MIP views [Figs. 11 (a) and 
11 (b)] correspond to a projection angle that does not belong 
to the acquisition sector. 

In the MIP views, the contrast enhancing effect and the 
better definition of the vascular structure obtained using the 
support function is clearly visible. Compare, for instance, 
the small vessels in the top right of the MIP views which 
are very blurred with the ART algorithm. 

In cross-sections [Figs. 11 (b) and 11 (d)], we observe the 
same effect, and the deformation of the aneurysm (the big 
white spot in the bottom center) is reduced, but it still re­
mains. The relative weakness of reduction of the deforma­
tion compared to that obtained in simulation may be due to 
the design of the support function. On simulation, the sup-

(c) 

(I) 

Fig. 10 Reconstruction from a data set composed of 36 projections equally spaced on 180 deg. First 
row: ART reconstruction (a) MIP view, (b) and (c) horizontal cross-sections through the aneurysm. 
Second row: reconstruction using the support function previously defined (km,n=0.001, kmax=0.01) (d) 
MIP view, (e) and (I) horizontal cross-sections through the aneurysm. 
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(a) (b) 

(c) (d) 

Fig. 11 Recontruction from a data set composed of 18 projections distributed on 120 deg. First row: 
ART reconstruction (a) MIP view and (b) horizontal cross-section through the aneurysm. Second row: 
reconstruction using the support function previously defined (kmm 0.001, kmax=0.01) (c) MIP view and 
(d) horizontal cross-section through the aneurysm. 

port function used increases locally in a quadratic way and 
can hyperconcentrate density, whereas the ad hoc function, 
which increa,es only in a linear way. seems to have lost 
this property. 

6 Conclusions 

In this paper. the problem of 3D reconstruction from an 
incomplete data set has been addressed. Within the con­
strained optimization framework, a nonzero null-space 
component of the null space of the acquisition matrix can 
be reconstructed by the minimization of a given criterion. A 
deterministic relaxation algorithm based on Bregman·s al­
gorithm combined with half-quadratic minimization tech­
niques has been proposed for the minimization of a large 
class of criteria. 

Simulation of numerical data has shown the value of 
such an approach for the extrapolation of the missing sec­
tors in the Fourier domain. Application to vascular data 
demonstrates the effectiveness of the proposed approach 
for enhancing small vessels and reducing the deformation 
due to limited angular data. 

7 Appendix A 

The analytical form of the ad hoc support function is 

3 /..111111 
- 2 if .r~J...111111 

I 
, 

.\-

? k-x+2krn,11 if krnrn""·I ~ 2.£.:mrn 
s( I )= - 111111 
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