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Abstract. We consider a cross-section topology that is defined on 
grayscale images. The main interest of this topology is that it keeps 
track of the grayscale information of an image. We define some 
basic notions relative to that topology. Furthermore, we indicate how 
to acquire a homotopic kernel and a leveling kernel. Such kernels 
can be seen as "ultimate" topological simplifications of an image. A 
kernel of a real image, though simplified, ,s still an intricated image 
from a topological point of view. We introduce the notion of an ir­
regular region. The iterative removal of irregular regions in a kernel 
enables us to selectively simplify the topology of the image. Through 
an example, we show that this notion leads to a method for seg­
menting some grayscale images without the need to define and tune 
parameters. © 1997 SPIE and IS&T. [S1017-9909(97)00104-9] 

1 Introduction 

The topology of discrete binary 2-D images has received a 
lot of attention (see Ref. I). In Refs. 2 and 3, a fuzzy digital 
topology for grayscale images is considered. Nevertheless, 
as far as we know. no systematic study of the homotopic 
transformations of 2-D grayscale images has been made. 

In this paper, we introduce some basic topological no­
tions for 2-D grayscale images. For that purpose, we define 
a cross-section topology. The homotopic transformations 
relative to that topology preserve the main grayscale infor­
mation of an image. This topology was considered in Ref. 
4, but it has not been developed. We give the basic defini­
tions that enables us to use this topology. We introduce 
some topological numhers that lead to a classification of 
points according to their topological characteristics. We 
give a necessary and sufficient local condition for changing 
the value of a point without altering the topology of an 
image. From these notions. we define the homoropic kernel 
and the le1•eling kernel of an image. These kernels can be 
seen as "ultimate" grayscale thinnings5 of an image. 
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We use these basic topological notions to develop a new 
method for segmenting an image into regions. A major fea­
ture of this method is that it does not involve any param­
eter. Let us consider a grayscale image as a relief.6 Suppose 
the image is a "two-class" image, i.e .. it consists in objects 
that lie on a background. The objects we want to extract 
can be seen as "significant basins" in this relief.4

·
7

-
12 The 

homotopic kernel of such an image, though very simplified. 
is still an intricated image. Since the topology has been 
preserved. all basins (significant and nonsignificant) re­
main. We define two regularization operators that alter the 
topology of the image by deleting two kinds of nonsignifi­
cant regions. After the application of these operators, we 
can extract a binary image that has the main topological 
features of the desired result. Finally. we present some re­
construction operators that perform a ''conditional thick­
ening" of the preceding binary image to obtain the final 
segmented image. 

The paper is organized as follows: Section 2 introduces 
some notions concerning relations, which are used as a gen­
eral framework for presenting operators. Section 3 reviews 
the definition of topology in binary images. In Sections 4 
and 5, we define some basic notions for grayscale images, 
and introduce the cross-section topology. In Sections 6, 7 
and 8, we present the basic transformations based on topol­
ogy that we use to segment some grayscale images. The 
effect of these transformations on several "real world" im­
ages is also presented. 

2 Relations 

In this section, we give some basic notations concerning 
relations. Relations are used in a classical way to define 
some topological notions, such as the notions of path, pla­
teau. and regional minimum. Furthermore. all the operators 
presented in this paper are defined in tenns of relations: a 
"lower•· ("upper") operator consists in decreasing (in­
creasing) the value of a point that satisfies a given condi­
tion, and this process is repeated until stability is achieved. 
The result obtained can be viewed as a "kernel" of a rela­
tion. 
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Let £ be a set, I' be the set composed of all subsets of 
E, and let ./r be a (binary) relation on £, i.e., ./? is a set of 
ordered pairs of elements of£. We know that a relation ./r 
can also be defined as a mapping from £ to I': the corre­
spondence between this mapping, also denoted ./?, and the 
ordered pairs is given by Vue£, Vu e£, v 
e .J?'( u) ~ ( u, v) e ./r. In this paper, relations are consid­
ered as mappings. A sequence u O •... , u 1. such that u, 
e .ft( u ,- 1) is an ./r-path from 11 0 to u 1. ; the length of this 
path is k. We denote ./11., the relation defined by: 

v e .~ ( 11 )~ there is an ./r-path of length k from II to v . 

We denote ./r1 the transitive closure of ./r, i.e. , the relation 
defined by: 

v e ./r"(u)~there is an ./?-path from u to v. 

We say that v is a kernel of II for ./r if v e ./?"( u) and 
./r(v)=0. We say that v is a kernel for ./r if ./r(v) 
=0. If ./?1 and ./?2 are relations, the relation . .lf1 U./r2 is 
defined by ve[ . .lf1U./?2](u)~ve./r1(u) or ve./r2(11). 
Let UC E. The set ./?( U) is defined by ./r(U) 
= U{./r(11),11 e U}. 

3 Topology of Binary Images 

In this section we review the basic notions of topology for 
binary images (see Ref. I) . 

We denote -Z as the set of relative integers. A point x 
e -Z2 is defined by (.r 1 .x2) with .r,e -Z. We consider the 
two relations f 4 and f 8 , which are relations on ...::-2 and 
which define two neighborhoods of a point x e ...::-2 : 

In the following, we will denote n the number such that 
n=4 or n=8. We define f!(.r)=r,,(.r) \{x}. The pointy 
e -Z2 is n-adjacent to x e ...::-2 if ye r ! (x). An n-path is a 
path for the relation ./r=f!. 

Let XC ..:::-2 and xeX ; we define X11 (x)=[ 11(x)nX. 
The relation ./r= [X 11]" is an equivalence relation. The 
11-connected components of X (or the 11-components of X) 
are the equivalence classes of this relation. The set com­
posed of all 11 -connected components of X 11-adjacent to a 
point x is denoted C,,[x,X]. Note that C,,[x,X] is a set of 
subsets of ...::-2 , not a set of points. To have a correspon­
dence between the topology of X and that of X, we must 
consider two different kinds of adjacencies for X and X: if 
we use then-adjacency for X, we must use the 11-adjacency 
for i, with (n,11)=(8,4) or (4,8). If xc...::-2 is finite, the 
infinite connected component of X is the background. the 
other components are the holes of X. 

Let X C ...::-2 and x e -Z2, the two topological numbers are 
(#X stands for the cardinal of X): 
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T(x ,X) = #C,,[x.f l(x) nX];T(x,X) = #C ,,[x,ft(x) ni]. 

We say that x e X is an isolated point if T(x,X) = 0, a bor-
- -

der point if T(x,X) > 0. and an interior poim if T(x ,X) 
= 0. The point x e X is simple (for X) if there is a one to 
one correspondence between the n-components of X an~ 
those of X\{.,} and also between the n-components of X 

and those of XU{.r}. The point .reX is simple (/or X) if 
there is a one to one correspondence between the 
11-components of X and those of XU{x} and also between 
the n-components of i and those of X\{x}. The set Y is 
lower homotopic to X if Y can be obtained from X by 
iterative deletion of simple points. The set Y is upper ho­
motopic to X if Y can be obtained from X by iterative 
addition of simple points. Two sets X and Y are homotopic 
if Y can be obtained from X by iterative deletions or addi­
tions of simple points. 

The following property is fundamental for our purpose, 
since it enables us to locally characterize simple points. We 
propose a similar property for grayscale images. 

~' .re....._- is simple~T(x,X)=l and T(x ,X)=I. 

4 Basic Notions for Grayscale Images 

A 2-D grayscale image may be seen as an application F 
from ..:::-2 to ...::-. For each point .r e ...::-2 • F(x) is the gray­
level value of x. We denote .7 as the set composed of all 
applications from ...::-2 to ...::-. 

Definition 1. Let Fe .7. We define the relation F,, 
by: '<Ix e ...::-2, V y e -Z2, ye F,, (x)~y e f ,,(x) and F(x) 
= F( y). An ./r-path with ./r= F,, is called a constant 
11-path. A set X C .:::2 is an n-platea11 (for F) if X is an 
equivalence class for the equivalence relation ./?= [ F 

11 
]". 

As in the binary case, we use two different kinds of 
adjacencies (n and n) for grayscale images. An 
n-adjacency is used for regional maxima. while an 
n-adjacency is used for regional minima, with (11,11) 
= ( 4,8) or (8,4): a regional maximum (regional minimum) 
being a set of points of uniform altitude with only lower 
(higher) neighbors. 

Definition 2. Let Fe .7. We define the following rela-
tions on .:::2• Vx e ...::-2, Vye .=-2: 

ye p ++ (x)~y e f,, (x) and F(x) < F(y); 

ye F (x)~y e f ,,(x) and F(x )>F(y): 

ye F (x)~yef ,,(x) and F( _,) -;;;,; F(y). 
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30 30 30 30 30 30 30 30 30 30 30 10 JO 10 60 10 10 60 40 40 40 

30 30 20 30 30 10 30 40 10 30 10 40 10 40 30 10 40 30 40 30 10 

30 10 10 30 10 30 30 10 30 30 40 30 40 40 30 50 50 30 40 10 10 

(a) (b) ( c) (d) (e) (f) (g) 

Fig. 1 Examples of configurations of the neighborhood of a point: (a) maximal destructible point, (b) 
maximal divergent point, (c) peak, (d) well , (e) constructible divergent point, (f) saddle point, and (g) 
simple side. 

An . .#-path with .A'= F ++ (Resp . . A'= F + , .A'= F -- , .A' 

= F - ) is called a stricrly increasing (resp. increasing. 
strictly decreasing , decreasing) path. A (regional) maxi­
mum [(regional) minimum] of F is a set X C -Z2 such that X 
is an n-plateau (11-plateau) for F with F +(X) 
=U{F+(x),xeX}=X [F - (X)=U{F (x),xeX}=X]. 

An 11-plateau (n-plateau) X C -::2 is a lower region (upper 
region) of F if it is not a maximum (minimum) of F . The 

upper set (lower set) of F is the set composed of all points 
belonging to upper regions (lower regions) of F. 

Our goal is to define some transformations changing a 
mapping F e .7, which represents a grayscale image. into 
another mapping GE .7. We introduce the notation of a 
"point wise transformation· ' as a simple such Lransforma­
tion, from which we build more complex ones. The result 
G of this transformation is obtained by replacing the value 
F(x) of a given point x by a certain value v, the value of 
all other points being unchanged. 

Definition 3. Let Fe .7. x e ...::-2 and v e ...::-. We denote 
[F:F( x):=v] the element G of.7such that G(x)=v and 

'vy-#-x. G(y)=F(y). 

5 Cross-Section Topology 

We now introduce the cross-section topology. Let Fe . .7. 
The section of F at the level k is the set composed of all 
points x such that F(x) ';3k. Observe that a section is a 
binary set. A transformation on F wi ll be "topology pre­
serving" if the topology of all the sections of F is pre­
served. Thus, the cross-section topology of mappings may 
be directly derived from the topology of binary sets. 

Definition 4. Let Fe .7, we denote F, = {x e -Z2; F(x) 
';3 k} with ke ..::-: F, is called a section of F. The point x 
e ..::-2 is destrucrihle (for F) if x is simple for F ,. with k 

= F(x). The point x e ..::-2 is construcri/Jle (for F) if x is 
simple for F ,+ 1 • with k=F(x). We define the two rela­
tions THIN and THICK defined on .7: VF e .7 and VG 
e.7, GeTHIN(F){:::)3xe-::2, such thatx is destruc­
tible for F and G=[F:F(x):=F(x) - 1]: G 
e TH I C K ( F) ¢::) 3x E ..::-2 , such that x is constructible for F 

and G=[F:F(x):=F(.r)+ I]. 
Note that if F'eTHI N(F) or F'eTHICK(F), then 

every section F { of F' is homotopic. in the binary sense, to 
the corresponding section F, of F. This leads to the notion 
of homotopy on . 7. 

Definition 5. Let Fe .7 and Ge. 7. Here G is lower 

homotopic to F if Ge TH I N "'(F) , G is upper homotopic 

to F if GeTHICKx(F), and F and Gare homotopic if 
Ge [THI NUTHICKr' (F). 

The following definition introduces the fundamental 
neighborhoods that must be used to handle the topology of 
grayscale images, as well as topo logical numbers that de­
scribe the topological characteristics of a point (we follow 
an approach used in the 3-D case, see Ref. 13). 

Definition 6. Let Fe .7 and x e -Z2 . We define the four 
neighborhoods: 

f + +(x,F) = {y E f t (x),F( y) > F(x)}; 

f (x,F)={y E f J(x),F (y)< F(x)} : 

We a lso define the four ropological numbers: 

r + + (x,F) = #Cll[x, r + + (x,F)]; 

r + (x,F) = #C
11
[x,f + (x,F) ]; 

T (x,F)=#C,,[x,f (x,F)]; 

T (x.F)=#C,,[x.f (x,F)]. 

When there is no confusion, we denote T + + 
= T ++(x,F) , r+=T+(x,F), Y-=T (x,F), and r -­

= T - (x,F). 
The following property can be directly derived from the 

preceding definitions and the characterization of simple 
points in binary sets. It shows that the topological numbers 
enable to locally characterize constructible and destructible 
points. 

Property 1. Let F e .7 and x e .Z2
• 

x is destructible for F ¢::) r + = I and T = I ; 

x is constructible for F ¢::) r + + = I and T = I. 

Furthermore, the topological numbers enable a classifi­
cation of the topological characteristics of a point (see the 
examples in Fig. I, with n=8). 
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20 20 20 20 20 20 20 20 20 20 20 20 20 

20 25 25 45 50 55 60 50 45 45 25 25 20 

20 25 50 20 20 20 20 35 20 20 45 25 20 

20 45 20 20 35 20 20 60 55 20 20 45 20 

20 45 20 35 20 35 20 45 50 20 20 50 20 

20 45 20 20 35 20 20 45 20 20 20 45 20 

20 60 20 20 20 20 20 20 35 50 35 45 20 

20 45 20 20 20 70 20 20 20 20 20 50 20 

20 45 20 20 60 50 60 20 25 30 30 45 20 

20 25 45 20 20 60 20 20 35 35 45 25 20 

20 25 25 45 45 50 50 60 50 45 25 25 20 

20 20 20 20 20 20 20 20 20 20 20 20 20 

20 50 50 45 60 60 60 60 60 60 45 50 20 

20 50 50 20 20 20 35 35 35 35 45 50 20 

20 50 20 20 35 20 20 60 60 35 50 50 20 

20 45 20 35 20 35 20 60 60 20 50 50 20 

20 60 20 20 35 35 20 60 35 35 35 45 20 

20 60 60 20 20 20 20 35 35 50 35 50 20 

20 60 60 45 70 70 70 50 35 35 35 50 20 

20 60 45 45 70 50 70 50 60 45 50 50 20 

20 60 45 70 70 60 50 50 60 45 50 50 20 

20 60 45 70 70 70 50 60 60 45 50 50 20 

20 20 20 20 20 20 20 20 20 20 20 20 20 

20 20 20 45 45 45 60 45 45 45 20 20 20 

20 20 50 20 20 20 20 35 20 20 45 20 20 

20 45 20 20 35 20 20 60 20 20 20 45 20 

20 45 20 35 20 35 20 35 2 0 20 20 50 20 

20 45 20 20 35 20 20 35 2 0 20 20 45 20 

20 60 20 20 20 20 20 20 35 50 35 45 20 

20 45 20 20 20 70 20 20 20 20 20 50 20 

20 45 20 20 60 50 60 20 20 20 20 45 20 

20 20 45 20 20 60 20 20 20 2 0 45 20 20 

20 20 20 45 45 20 50 60 45 45 20 20 20 

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

(a) (b) (c) 

Fig. 2 Homotopic transformations: (a) original image; (b) upper kernel; and (c) lower kernel. 

Definition 7. Let Fe .7 and .re -.:-2 : x is a peak if 
T + = 0; x is minimal if T - - = 0; .r is dil•ergent if T ­

> I ; xis a well ifT =O; .r is maximal ifT++ =O; xis 
com•ergent if T + + > I ; x is a lower point if it is not maxi­
mal; x is an upper point if it is not minimal: .1 is an interior 
point if it is minimal and maximal; .r is a simple side if it is 
destructible and constructible; .r is a saddle point if it is 
divergent and convergent. 

By considering all the possible values of the four topo­
logical numbers we can sec the following. 

Property 2. Let F e. 7 and .r e .::2, x corresponds nec­
cssari I y to one and only one of the following types: (I) a 
peak, (2) a well, (3) an interior point, (4) a minimal con­
structible point. (5) a maximal destructible point, (6) a 
minimal convergent point, (7) a maximal divergent point, 
(8) a simple side. (9) a destructible convergent point, ( I 0) a 
constructible divergent point, and ( I I) a saddle point. 

6 Homotopic Transformations and Leveling 
Transformations 

We introduce the following two basic transformations rela­
tive to the cross-section topology. 

Definition 8. Let Fe .7. A kernel of F for the relation 
THIN is called a lower homoropic kernel of F. A kernel of 
F for the relation THICK is called an upper homotopic 
kernel of F. 

The lower (upper) homotopic kernel of F can be seen as 
an "ultimate" topological simplification of F. in the sense 
that no destructible (constructible) point remains in the ker­
nel. We can compute a lower homotopic kernel of F by 
using iteratively the definition ofTHIN(F) (Definition 4). 
AL each step of the procedure. we lower the value of a 
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destructible point by I. In fact, it is possible to have a faster 
procedure based on the following properties. 

Let Fe .7 and .re -.:-2 . We define: 

a ++ (.r.F)=min{F(y).ye r ++ (x,F)} if r ++ (.l,F) 

:#: 0 ,a ...... (.r,F)=F(.r) otherwise; 

a - (.r,F)=max{F(y).yef (.r.F)} if r (.r,F) 

:#:0,a (.r,F)=F(.r) otherwise. 

If .r is constructible for F. then F and [F;F(x): 
=a++ (x ,F)] are homotopic. If x is destructible for F. 
then F and [F ;F(x): = a (.r.F)] are homotopic. 

Lower and upper kernels can be efficiently computed 
using a "breadth-first" strategy. A classical technique for 
implementing such a strategy is based on two lists of 
points. The first list is initialized with all constructible (de­
structible) points of the original image. If the first list is not 
empty. we extract the first point of the list. If this point is 
constructible (destructible). its value is changed in the im­
age. and the neighbors of this point are inserted in the sec­
ond list. After scanning the first list. we exchange the roles 
of the first and the second li sts. We repeat the procedure 
until the \econd list is empty. All kernels presented in this 
paper were computed using this technique. 

In Fig. 2, an upper and a lower homotopic kernel are 
represented (with n = 8 ). Two kernels corresponding to a 
real image are also represented in Fig. 3. Figure 3(a) shows 
an original image (256 graylevels); the lower levels are 111 

black and the higher levels are in white. Below each gray­
scale image of Fig. 3 (and later in Figs. 6, 8, and I 0), the 
corresponding regional minima are given; they appear 111 

white. We can see that, for a real image. there are a lot of 
minima. each of these regions being composed of only few 
points. Because of their size, only a few points of the 
minima have been "deleted" by the upper kernel transfor­
mation [Fig. 3(b)]. On the other hand. the lower kernel 
transformation expands the minima as much as possible. 
Nevertheless, if we examine the upper set (nonminimal pla­
teaus) of Fig. 3(c), we notice that it is not thin. In fact. an 
homotopic lower kernel cannot be viewed as a '·network of 
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(a) (b) (c) 

Fig. 3 Homotopic transformations: (a) original image; (b) upper kernel; and (c) lower kernel. 

thin lines": due to the discrete nature of the image repre­
sentation, it may contain thick parts. Four basic configura­
tions, depicted Fig. 4, may explain this phenomenon: 

1. The flat junction; we retrieve this configuration in 
homotopic kernels of binary images. 

30 30 30 30 30 30 30 30 30 30 30 30 30 

30 10 10 30 10 10 30 10 10 30 10 10 30 

30 I 0 10 10 30 10 30 10 30 10 10 10 30 

30 I 0 10 10 10 30 30 30 10 10 10 10 30 

30 30 30 30 30 30 30 30 30 30 30 30 30 

30 10 10 10 10 30 30 30 10 10 10 10 30 

30 10 10 10 30 10 30 10 30 10 10 10 30 

30 10 10 30 10 10 30 10 10 30 10 10 30 

30 30 30 30 30 30 30 30 30 30 30 30 30 

(a) 

40 40 40 40 40 40 

40 30 30 30 10 40 

40 30 30 10 30 40 

40 30 10 30 30 40 

40 10 30 30 30 40 

40 40 40 40 40 40 

( c) 

2. The f?raysca/e junction: this configuration is thicker 
than a binary kernel, in the sense that there are some 
points that are simple for the (binary) upper set. 

3. The network of minima; the points adjacent to some 
very close regional minima (often one point minima) 

40 40 40 40 40 40 40 40 40 40 40 40 40 

40 10 10 10 10 10 10 10 10 10 10 10 40 

40 10 10 10 10 10 10 10 10 10 10 10 40 

40 10 10 10 10 10 40 10 10 10 10 10 40 

10 40 40 40 40 40 30 40 40 40 40 40 40 

40 10 10 10 10 10 30 10 10 10 10 10 40 

40 10 10 10 10 10 30 10 10 10 10 10 40 

40 10 10 10 10 10 30 10 10 10 10 10 40 

40 40 40 40 40 40 40 40 40 40 40 40 40 

(b) 

30 30 30 30 30 30 30 30 30 30 30 30 30 

30 10 10 10 10 10 10 10 10 10 10 10 30 

30 10 I 0 10 10 10 10 10 10 10 I 0 10 30 

30 10 I 0 10 10 40 40 40 10 10 I 0 10 30 

30 10 10 IO 40 30 30 30 40 10 10 I 0 30 

30 10 10 10 40 30 30 30 40 10 10 I 0 30 

30 10 10 10 10 30 30 30 40 10 10 10 30 

30 10 10 40 20 40 30 40 20 40 10 10 30 

30 10 10 10 40 10 30 10 40 10 10 10 30 

30 10 10 10 10 10 30 10 10 10 I 0 10 30 

30 10 10 10 10 10 30 10 10 10 10 10 30 

30 30 30 30 30 30 30 30 30 30 30 30 30 

(d) 

Fig. 4 Four basic configurations of thick lower kernels: (a) flat junction, (b) grayscale junction, (c) 
network of minima, and (d) fortified castle. 
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20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 0 20 

20 20 20 45 4 5 45 45 45 45 45 20 20 20 20 20 20 45 45 45 45 45 4 5 45 20 20 20 20 20 20 45 45 45 45 45 45 45 20 20 20 

20 2 0 45 20 20 20 20 35 20 20 45 20 20 20 20 4 5 20 20 20 20 20 20 20 4 5 20 20 20 20 45 20 20 20 20 20 20 20 45 20 20 

20 45 20 20 35 20 20 35 20 20 20 45 20 20 45 20 20 20 20 20 20 20 20 20 45 20 20 45 20 20 20 20 20 20 20 20 2 0 45 20 

20 45 20 35 20 35 20 35 20 20 20 45 20 20 45 20 20 20 20 20 20 20 20 20 45 20 20 45 20 20 20 2 0 20 20 20 20 20 45 2 0 

20 4 5 20 20 35 20 20 35 20 20 20 45 20 20 4 5 20 20 20 20 20 20 20 20 20 45 20 20 45 20 20 20 20 20 20 20 20 20 45 20 

20 4 5 20 20 20 20 20 20 35 35 35 45 20 20 45 20 20 20 20 20 20 20 20 20 45 20 20 45 20 20 20 20 20 20 20 2 0 20 45 2 0 

20 45 20 20 20 60 20 20 20 20 20 45 20 20 45 20 20 20 60 20 20 20 20 20 45 20 20 45 20 20 20 20 20 20 20 2 0 20 45 2 0 

20 45 20 20 60 50 60 20 20 20 20 45 20 20 45 20 20 60 50 60 20 20 20 20 45 20 20 45 20 20 20 20 20 20 20 2 0 20 45 2 0 

20 20 45 20 20 60 20 20 20 20 4 5 20 20 20 20 4 5 20 20 60 20 20 20 20 45 20 20 20 20 45 20 20 45 20 20 20 20 45 20 20 

20 20 20 45 45 20 45 45 45 45 20 20 20 20 20 20 45 45 20 45 45 45 45 20 20 20 20 20 20 45 45 20 45 45 45 45 20 2 0 20 

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2 0 2 0 

(a) (b) (c) 

Fig. 5 Leveling and regularization: (a) lower leveling; (b) lower regularization; and (c) upper regular-
ization. 

may be nondestructible. Thus, we can generate a 
thick plateau that is not minimal [the 30s of Fig. 
4(c)]. It can be seen that networks of minima may 
generate thick regions of arbitrary size. 

4. The fortified castle; the entrance of the castle consists 
in a thin line which comes out onto the inside of the 
castle [the 3 X 3 block of 30s in Fig. 4(d)]. The inside 
of a castle is not a subset of a minimum and it can be 
seen that we can build castles the insides of which 
have an arbitrary size. 

We introduce now the leveling kernels that can be 
viewed as filtered homotopic kernels: 

Definition 9. We define the lower leveling relation 
(LL£) and the upper lel'eling relation (ULE); VF E .7, 
VG e.7: GE LL£(F )~3 .1 E -.::

2
• such that x is destruct­

ible or a peak for F, and G= [F ;F(x):= F(x)- 1] ; G 
E ULE(F)~3 xe ..::::-2 , such that .r is constructible or a 
well for F. and G=[ F ;F(x):= F(x)+ I]. A lower level­
ing kernel is a kernel for LL£. An upper leveling kernel is 
a kernel for UL£. 

As for homotopic kernels, it is possible to increase (de­
crease) the value of a point up to cr ' +(x, F ) [down to 
cr-- (x,F )] for a faster procedure. Here again, we use the 
already mentioned breadth-first strategy for computing 
lower and upper leveling kernels. Let us compare the lower 
homotopic kernel [Fig. 2(c)] of an original image [Fig. 
2(a)] with the lower leveling kernel [Fig. S(a)] of the same 
image. It can be seen that the set composed of upper re­
gions has been flattened down. A lower leveling kernel of 
the real image of Fig. 3(a) is depicted Fig. 6(a). Despite the 
appearance, this kernel is very different from the homo­
topic kernel of Fig. 3(c): as mentioned, the values of the 
points belonging to upper regions have been smoothed. 
This characteri stic of leveling kernels is used in the next 
section for regularization operators. 

7 Regularization Transformations 

We have seen, through an example, that the minima of a 
real image do not correspond to the significant basins. In 
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Fig. 3(a), the significant basins that are perceived, corre­
spond to the cells of the image. Nevertheless, each cell 
contains a lot of minima. The homotopic and leveling ker­
nels of an image, though simplified, keep all these minima. 
This oversegmentation problem is also crucial when using 
methods based on the watershed transformation.7·

9 14
·
15 

In this section, we propose a method for detecting sig­
nificant basins. In a lower kernel, the minima come into 
contact through upper points. We take advantage of th is 
feature to characteri ze some nonsignificant regions. Since 
its upper values have been flattened, we consider the lower 
leveling kernel rather than the lower homotopic kernel. 

Definition 10. Let K e .7 be a lower leveling kernel. Let 
R I and R 2 be two minima of K. We say that a point x is a 
separating point for R I and R 2 • if x is adjacent to both R 1 

and R 2 . If R I and R 2 are separated by a point, we say that 
R I and R 2 are neighboring minima. If R is a minimum, we 
define the upper \'Glue 'V(R ) of R as: 

\Jl(R )= max{K(x), for each point x adjacent to R}. 

We now introduce the notion of regularization (see Fig. 7). 

Definition 11. Let K e .7 be a lower leveling kernel. Let 
R be a minimum and let x be an upper point adjacent to R. 
We say that x is an irregular upper poilll if K(x)- K(R ) 
< 'V(R )- K(x). In this case, K(R ) is called a regulari::.ed 
value of x. We say that R is an irregular minimum if there 
is a minimum R ' separated from R by a point x such that 
K(x) - K(R ) < K(R )- K(R'). In this case, K(x) is called a 
regulari::ed 1•alue of R . We denote lr( K) [ur(K )] an ele­
ment of .7 obtained from K by replacing all the values of 
upper irregular points (the values of irregular minima) by 
their regularized values. The upper regulari:arion relation 
UR is defined by: 

K ' E UR(K )~K ' is a lower leveling kernel of ur(K ). 

The lower regulari::ation relation LR is defined by: 
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(a) (b) (c) 

Fig. 6 Leveling transformation and regularization: (a) lower leveling; (b) lower regularization; and (c) 
upper regularization. 

K' ELR(K)¢::,;K' is a lower leveling kernel of lr(K ). 

An upper regularized kernel is a kernel for UR. A lower 
regularized kernel is a kernel for LR. 

It is possible to get a lower regularized kernel of an 
image by regularizing all the irregular upper points of the 
image and by computing a lower leveling kernel of the 
result. We have to repeat this procedure until stability. The 
same approach is used for upper regularized kernels. 

A lower regularized kernel of the lower leveling kernel 
of Fig. 5(a) is shown in Fig. 5(b). The upper regularized 
kernel of Fig. 5(b) is shown in Fig. 5(c). The regularization 
transformations of the leveling kernel of Fig. 6(a) are given 
in Figs. 6(b) and 6(c). In Fig. 8, the lower leveling trans­
formation of a 256 gray-level image is depicted, as well as 
the result after regularization. Note the noticeable gradient 
of illumination of the original image. We see that almost all 
significant basins have been detected and that the minima 
of the final result (image below) can be seen as the segmen-

K 
/ 'l'(R) 

: x 

R 

tation of the original image. The result can be further im­
proved using a hierarchical regularization technique (see 
Ref. 16). Note that there was no preprocessing of the origi­
nal images of Figs. 3 and 8; the only transformations that 
were applied are (I) lower leveling transformation, (2) 
lower regularization, (3) upper regularization, and (4) ex­
traction of minima. 

8 Reconstruction Transformation 

The image F obtained after regularization is a "thin" im­
age. The minima of this image correspond to the segmen­
tation of the original image / , up to a homotopic transfor­
mation. In fact, the significant basins of the original image 
have been made as broad as possible by the thinning pro­
cess. To recover the shape of the original basins as much as 
possible, we require a transformation that realizes a condi­
tional thickening of the upper set X of F (see Fig. 9). 

K 

R 

R ' 

X 

Fig. 7 Regularization: an example of upper irregular point and irregular minimum. 
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(a) (b) (c) 

Fig. 8 Illustration of regularization: (a) original image; {b) lower leveling; and (c) regularization. 

Definition 12. Let / E .7 and F E. 7. We denote ./ · as 
the set composed of all subsets of ...:::-2 . We define the rela­
tion UR I.F, which is a relation on . J'; 

V X E ./',VY E .J': Y E UR u( X) ~ 

I. 3x EX such that x is simple for X and x belongs to a 
minimum R of F; and 

2. Y=XU{x}; and 

3. IIC.1)- 'l'(R)l < ll (x) - F(x)I. 

An upper reconstruction kernel of F inside I is a kernel of 
the upper set of F for the relation UR u . 

The original image (256 gray-levels) depicted in Fig. 
I O(a) contains a lot of minima (the image below). The re-

F 
R 
X 
y 

'l'(R) 
/ 

I 
X / 

~ 
---

Fig. 9 Illustration of reconstruction. 
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suit after lower and upper regularization performed on a 
lower leveling kernel is almost perfect [Fig. I O(b)]: we re­
cover the topology of the significant basins of the original 
image. The binary set obtained after reconstruction [Fig. 
IO(c)] recovers the shape of these basins. 

In Fig. I I (a). a magnetic resonance (MR) image of a 
human brain is depicted. The segmentation must bring to 
the fore the folds of the brain. Fig. l2(a) is a picture of an 
electrophoresis gel. The images obtained after regulariza­
tion are shown Figs. 11 (b} and I 2(b). Figs. 11 (d) and I 2(d) 
show the result after reconstruction. We can observe some 
ill-shaped lines that alter the quality of the result. They are 
due to the fact that a large minimum of a regularized image 
may contain, in the original image, several reconstructible 
zones. Since the reconstruction operator preserves the ho­
motopy. some paths must be preserved between these 
zones. The location of these paths depends on the scanning 
order of the points and thus does not take into account the 
relief of the original image. 

A solution to this problem is to consider a hierarchical 
reconstruction operator that processes the points according 
to their increasing gray-levels. The result of this operator is 
represented Figs. 11 (e) and I 2(e). The paths generated for 
the preservation of homotopy are made of points of lowest 
possible values. Thus the segmented image "fits" the 
original image. 

In homotopic reconstructions, some reconstructible 
zones surrounded by nonreconstructible zones may never 
been reached. These zones correspond to holes in the ob­
ject. If these holes are to be recovered, a nonhomotopic 
reconstruction operator must be used. The definition of this 
operator is the same as the definition of the reconstruction 
operator, except that we do not impose that the point x be 
simple (see Def. 12). The results given by this operator are 
represented Figs. 11 (f) and I 2(f). Some light and discon­
nected areas are recovered. 
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( a) (b) (c) 

Fig. 10 Illustration of reconstruction: (a) original image; (b) lower leveling; and (c) reconstruction. 

9 Conclusion 

We have introduced a cross-section topology and some ba­
sic transformations relative to that topology, the homotopic 
and leveling transformations. Based on these notions, we 
have proposed a segmentation chain for grayscale images 
which consists in the three following steps: 

(a) 

(d) 

(b) 

(e) 

Step I is the leveling transformation. which preserves 
some basic topological characteristics of the regions to be 
segmented. For example, it preserves the connectedness of 
minima. It also provides informations about the minima. 
which can be considered as neighbors, as well as the alti­
tude of the pass, which separates two neighboring minima. 

(c) 

~-
.../.' , 

, 

. . 
. -~,~·· 

( f) 

Fig. 11 Illustration of reconstruction: (a) original image; (b) regularization; (c) upper set; (d) homotopic 
reconstruction; (e) hierarchical reconstruction, and (f) nonhomotopic reconstruction. 
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(a) (b) (c) 
Copyritt MicroMorph ENSMP 

0 t . , f 
. , f 

r· .• • , ... .,.j~ h .. ,~ j,◄ '-ft" -◄ • • 
• • • • 

~--- .. f .. . ,.. 
i.~ ... -- • • --~ .. ' .. ... ~~· ... --,. .. i._ .. .J._ 

.. 
_ ... .J. _ -- .. ...J. _ 

(d) (e) (f) 

Fig. 12 Illustration of reconstruction: (a) original image; (b) regularization; (c) upper set, (d) homotopic 
reconstruction; (e) hierarchical reconstruction; and (f) nonhomotopic reconstruction. 

The second step consists of two regularization transfor­
mations. They break the topology to eliminate non­
significant regions. The upper regularization eliminates 
nonsignificant minima, while the lower regularization 
transformation eliminates nonsignificant upper regions. 

The last step is the reconstruction transformation, which 
enables us to recover the shape of the original regions. 

This approach to segmentation is new. It provides sig­
nificant results even when the initial image has bad con­
trast. Note that the presented images have been segmented 
using only the preceding four basic operators; no enhance­
ment or preprocessing step has been used. Furthermore, 
these operators do not require the tuning of any parameter. 
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