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1 Introduction 

Rather often images are simultaneously corrupted by differ­
ent types of noise and degraded by blurring. This situation 
is typical for optical, IR and radiometric imaging. 1

-
4 The 

peculiarity of the problem considered in Lhis paper is the 
assumption that the influence of complex noise, being a 
combination of additive, impulsive and/or multiplicalive 
noise, is not too high to overwhelm the negative effect of 
blurring. Therefore, the design of special image restoration 
procedures aimed at both elimination of blurring and noise 
reduction are expedient. 

There are various approaches to image restoration:5
-

8 

Wiener and inverse filtering. restoration based on regu lar­
ization procedures, nonlinear approaches to image 
recovery, and iterative techniques and algorithms. For 
the considered situation, for instance, if' blurring effects 
and additi ve and impulsive noise are present, 
many restoration methods fai l to perform well. In particu­
lar. Wiener filtering is unable to remove spikes and it 
requires reliable information concerning the spectral and 
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statistical properties of the signal and Lhe noise, which 
is orten not avai lable. Inverse filtering sometimes leads 
to unexpected add itional distortions even if the noise level 
is comparatively low. Regularization procedures can 
provide a trade-off between noise reduction and blurring 
removal, but they do not perform well when impulsive 
noise is present. Nonlinear and iterative methods avoid 
some drawbacks of the aforementioned techniques, but 
they are rather complex and require high computational 
efforts. 

The locally adapti ve techniques and algorithms of image 
restoration described by Kuan er a/.,3 Zervakis and 
Katsaggelos,4 Zervakis and Vcnetsanopoulos,9

·
10 Zervakis 

and Kwon. 11 and discussed in our papers 11
·
13 seem to be 

useful tools for reaching the main goals because Lhey com­
bine the image restoration with adaptive and/or nonlinear 
filtering. 

Here we firsl demonstrate the efficiency of local adapta­
tion principles 12

-
14 for image restoration for a traditional 

image and noise model using the proposed hard-switching 
procedure and nonlinear filters. Second, we show the steps 
to take if spikes are present in addition to blurri ng and 
additi ve noise in images. Finally, the results of using the 
proposed restoration algorithms for images corrupted by 
multiplicative noise arc also presented. 

The structure of this paper is the following. Section 2 
discusses the peculiarities of well known techniques of 
image restoration, including those related to the proposed 
methods and those used for comparison. In Sec. 3 the 
proposed algorithms are described. The fou rth section 
contains a quan titative analysis of the proposed image 
restoration procedures and their comparison to well 
known ones using both quantitative criteria and test 
images. Finally. conclusions and recommendations are 
presented. 
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2 Image/Noise Models and Traditional Image 
Restoration Approaches 

As mentioned earlier, usually the images represented as 
digital (often 8-bit value) two-dimensional (2-D) data ar­
rays are degraded by linear distortions (blurring, defocus­
ing) and corrupted by superposition of additive, impulsive 
and/or multiplicative and quantization noise. Here we do 
not discuss the reasons behind these factors because, de­
pending on the situation at hand, they are rather various. 
Besides, when discussing the properties of the considered 
restoration algorithms, in some cases the influence of one 
or two kinds of noise is neglected. In this way it is possible 
to compare the known and the proposed techniques in situ­
ations where they can all be applied. 

The generalized model of the sampled image / ( k ,I) to 
be reconstructed has the following representation, 

l(k,! )=u(k,/) L, h(k-i,! -j)f(i,j)+n(k,l}+d(k,/) 
i,j 

+s(k,/}, ( I ) 

where k=0,1, ... ,K-1 and / = 0,1 , ... ,L- I denote the im­
age pixel indices. K X L is the image size, and /(k,/) de­
fines the ideal image [/(k./);;;,:0]. Furthermore, 
h(6.k,6./);;;,,0 denotes the symmetrical defocusing (blur­
ring) function, that is assumed to be spatially invariant. 
Finally, u( k ,I) is the function describing multiplicative 
noise, n(k,I) is the additive Gaussian white noise, d(k,I) 
denotes the quantization noise and s(k./) is the component 
characterizing impulsive noise. In the following, we have 
made the following typical assumptions about the noise 
processes: 

E[u(k,!)]= I , 

var[u(k,/)] =a~, 

E[n(k,l)]=0, 

E[n(k,!)n(k+i,I+ j)]=0. if i i=0 or ji=0, 

var[n(k,/)]= a ~, 

E[d(k.1)] = 6./2 

(or 0 depending on the rounding algorithm), 

where t:,. is the quantization step equal to unity for the con­
sidered 8-bit integer value representation of images. Fur­
thermore, it is assumed that var[d(k,/)]=6. 2/12. For sim­
plicity, it is also assumed that E[u(k,/)u(k+i,1+ j)]=0, 
ii= 0, j i= 0, i.e., the multiplicative noise is white. Our im­
pulsive noise model is the following: for every image pixel 
the function s(k,/) has values greater than 3[a~ 
+ j2(k,l)a~]'12 with probability P,, or the value 0 with 
probability I - P s. In all practical tests, the traditional salt­
and-pepper impulsive noise model was used. 

In many cases it is expedient to present the model (I) in 
a vector-matrix form 
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I= UHf+ n+d+s, (2) 

where I, f, n, d, and s are column vectors having dimen­
sions K • L X I corresponding to the observed and ideal im­
ages, additive, quantization and impulsive noise vectors, 
respectively. Furthermore, H and U denote the blurring 
function h(k,/) weighting factor Toeplitz matrix and the 
multiplicative noise diagonal matrix, whose dimensions are 
KL XKL. The k/'th image sample corresponds to the (kl 
+/)'th element of the vector row if the vector-matrix rep­
resentation is used. 

For solving inverse ill-posed problems of image restora­
tion, the function h(6.k ,M) must be known. In some cases, 
it conforms with the imaging system ambiguity function 
(called the point-spread function, the directivity pattern or 
the spatial response). In some situations it can be estimated 
by using real data or by using a priori information about 
the characteristics of the imaging system and/or the condi­
tions of its operation. Otherwise, some reasonable assump­
tions or approximations should be used and statistical data 
can be attracted for this aim. 

The classical approach of image restoration concentrates 
on the situation where 

1 
a;;=0. P.,=0. 

Note that the second condition (a~= 0) implies that 
there is no multiplicative noise [ u(k ,/) = 1]. Furthennore, 
the fourth condition ( P, = 0) causes the impulsive-noise 
term s(k,/) to vanish, and the third condition (!:,,.«;a11 ) 

makes the quantization noise d(k.l) insignificant compared 
to the Gaussian noise. Under these conditions, the model of 
Eq. ( I) reduces to the classical one 

/ (k,/)= L, h(k-i.1-j)f(i.j)+n(k,I). (3) 
I.) 

This standard situation has been solved and optimal linear 
filters for this situation are easy to find. Even though the 
other noise components of the model of Eq. ( I) are likely to 
cause serious problems, the linear filter framework is used 
as a basis for our approach. 

Using the Fourier transform approach one can easily ob­
tain 

(4) 

where wk=27Tk/(K-1) and w1=2'TTll(L- 1 ). Further­
more,/( wk> w1), F( wk ,w1), N(wk,w1) are the discrete 2-D 
spatial spectra of l(k,/) , f(k,/) and n(k,I), respectively. 

In the frequency domain, the inverse filtering is de­
scribed by the expression 

where F( wk, w1) denotes the Fourier transform of the re­
constructed image and Y( wk, w1) = 1/H (wk, w1) denotes 
the transfer function of the inverse filter. Note that the in-
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fluence of the noise component N(wk ,w1) has been ne­
glected. Simultaneously with the distortion (blurring) cor­
rection (Eq. (5)] leads to an infinite noise amplification in 
the high frequency areas. That is why the linear image res­
toration techniques tend to find a restoration filter 
Y ( w,. w1), which approximates I /H ( w,, w 1) , providing the 
possibility to correct linear distortions while preventing es­
sential noise ampli fication. There are several approaches lo 
solving this problem, 15 for example, inverse filtering with a 
limited bandwidth. or the multiplication of 1/H( w, ,w1) by 
s_ome indicator function resulting in the smoothed solution 
F(w, .w1). Another variant is Tikhonov·s regularization 
approach, which uses a stabilizing function R ( w,. w1• a): 

(6) 

where a is a regulari,ation parameter and R ( w,. w1• a) is 
defined by 

(7) 

The stabilizing function D (w4 .w1) takes into account a 
priori information concerning the "smoothness·' of an im­
age and the technique described by Eqs. (6) and (7) pro­
vides additional noise suppression of high frequency com­
ponents on the contrary to the inverse filtering [Eq. (5)]. 
There are some reasons to use the described restoration 
algorithms. The regularization scheme of Eqs. (6) and (7) 
results in linear filtering of blurred image. It can be rather 
easily implemented and requires low computational efforts. 
Besides, usually it provides appropriate quality of restored 
image due to the possibility to vary the value a and func­
tion fl( w4 • w1). The simplest regularization function 
fl ( w4 • w1) can be described by the following expression: 
D ( w 4 • w1) = w;1 + w l' , where t is the regulari zation order. 
Choosing and/or varying a and t it is possible to achieve a 
trade-off between the blurring correction and the noise 
smoothing. 

The Wiener filter. being optimal with respect to the 
mean square error (MSE) criterion takes into account the 
information concerning the image and noise spectral prop­
erties [power spatial spectra S/w, ,w1) and Sn(w, ,w1). re­
spectively]. In a generalized forn1 (with parameter a, when 
it can be termed the controlled Wiener filter) it is described 
by the following formula 

(8) 

This formula obviously requires reliable a priori informa­
tion concerning the spectral characteristics of the imaging 
system. the image and the noise. Unfortunately. this kind of 
data are usuall y not available. Besides. the use of tech­
niques based on optimal estimation theory for image pro­
cessing often docs not provide good results because the 
criteria used do not match well the psychophysical pecu­
liarities of the human vision. Therefore. even improved 

techniques of linear restoration4
•
15 have a limited applica­

bility. This is also explained by the fact that the assump­
tions of the noise models behind the theory do not corre­
spond well to practica l situations at hand. These aspects 
relate to all linear image restoration procedures including 
the Bayesian one. 15 

Nonlinear restoration techniques enable one to eliminate 
some drawbacks typical of the linear techniques. A class of 
nonlinear procedures of image restoration is based on a 
descriptive regularization approach. 16 according to which 
one must minimize the quality functional 15

·
16 cf>[ f] = 0( f] 

+C[f,A] + f![f, a], which includes 0 [f], describing the 
discrepancy of the ideal image and the obtained solution: a 
stabilizing functional D[f.a]. providing the noise stability 
of the solution and a restrictions functional C( f. A], con­
taining additional information about the image. These re­
strictions can be expressed as equations or inequalities. one 
of which is the required non-negati vity off. 

The task of minimizing <l>[f] is usually solved by non­
linear programming techniques, thus it requires numerical 
optimization methods that generally result in significant 
computational efforts. This is one of the main disadvan­
tages of the nonlinear restoration techniques but the idea of 
using restrictions is reasonable and prolific. 

An alternative method is to use iterative restoration 
procedures.6·

8 They are relatively simple and enable us to 
take restrictions into account easily enough. In general, the 
iterative restoration is described by the following expres­
sion 

F"'+ 1 
( w, .w1) = l (w, .w1)+[F"'(w, .w1) 

- H ( wk .w1)F"'( wk ,w1)]. (9) 

where m = 0.1 ,2, ... defines the iteration number for the 
spatial spectrum domain, and F0(wk ,w1)=0; F 1(w, ,w1) 

= / ( w, ,w1). In the vector-matrix form one has 

./"'+I=]+ ( 1 - .}r).7"', ( I 0) 

where ..7° = 0: . 7 1 = I, m = 0.1.2 .... and 1 denotes the iden­
tity matrix. Here .7"' . .7. and _;r denote the Fourier trans­
forms of the corresponding vectors. 

Another advantage of the iterative techniques other than 
their simplicity is the possibility to use a priori restrictions 
at every iteration. Iterative algorithms with restrictions be­
come nonlinear. which is why they possess the positive 
features typical of nonlinear restoration methods whi le pre­
serving the simplicity of the linear restoration techniques. 
The iterative procedure with restrictions can be described 
as 

.7'" +I=]+ ( 1- .}r)9l.7'" • ( I I ) 

where 9l is the restriction operator (in general it is nonlin­
ear). Typically the restriction operator operates in the spa­
tial domain instead of the spectral domain. It should satisfy 
the property 9l7=.7. i.e .. being applied to the ideal image 
it must act as an idempotent filter. 

The iterative algorithm (9) in the case of no noise con­
verges to the original image; otherwise it is recommended 
to stop iteration process in order to prevent noise 
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amplification.15 The procedure with restrictions of Eq. ( 11) 
is more stable to noise influence. Its convergence properties 
are determined by the restriction operator 9'l (Ref. 15). 

During the last IO yr several new adaptive image resto­
ration methods have been proposed.1.9.llW The basic idea 
behind them is 10 use different filters for differem types of 
image regions. Practical images usually contain large ho­
mogeneous regions and regions with a significant amount 
of small details, and it is not reasonable 10 use the same 
filter for both types. Therefore, the fi ltering algorithm 
should pay auention Lo the type of the region inside the 
fi ltering window. Several adaptive algorithms·1·

9
·
10 apply the 

local mean and the local variance to determine the type of 
the input sample and to select an appropriate filter. When 
such algorithms are extended by including the detection of 
impulses. the resulting algorithms perform well even in 
complex situations that are described by noise models of 
Eqs. (I) and (2). 

The aforementioned advantages of iterative. nonlinear 
and locally adaptive restoration procedures stimulated our 
interest to design adaptive nonlinear iterative algorithms 
that tend to combine their positive features . Different ap­
proaches to the design and application are possible, and in 
the fo llowing some of the most promising ones arc pre­
sented. 

3 Proposed Locally Adaptive Algorithms of 
Image Restoration 

The simplest version of the proposed adaptive image resto­
ration procedure performs a hard-switching12 1~ of the regu­
larization parameter a [see Eqs. (7) and (8)]. The decisions 
are made according to the comparison of a local adaptation 
parameter14 t1., with one or several thresholds 

{ ".,(1, ., ], if tk1<t1, 

i·.,= Pu[l.a"], if foE lt" 1,t" J. q=2, ... ,M, 

Pdl.a~,J. if tkl> f11, 
( I 2) 

where p[I,aq] denotes the result of the filtering of the 
observed image I by the restoration procedure of Eq. (7) or 
Eq. (8) with parameter aq. 

Local adaptation pararneter14 t1., indicates the behavior 
of the original image in the neighborhood of the (k,/)'th 
pixel. Relatively large values of t1., ~enera!ly corr~spo_nd to 
the areas of details. It is known9·

10
·1. that 111 the v1c11111y of 

details and edges it is preferable to retain a higher level of 
noise fluctuations for the sake of resolution enhancement. 
That is why regu larization parameter a should 10·15 be de­
creased for these regions. Such a recommendation can be 
realized with the aid of adaptive algorithms. The proposed 
technique [Eq. ( 12)] is one of them. It updates a in accor­
dance to the comparison of the adaptation parameter tu to 
the thresholds. 

It is possible to use a soft-switching adaptive image res­
toration procedure as well. but it is more difficult to imple­
ment than the hard-switching procedure. If M is mall (for 
example, 2 or 3) one can acquire M + I images correspond­
ing to different a", q = I, ... ,M by applying the algorithm 
of fast Fourier transform, performing filtering in the spatial 
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frequency domain and then (after inve:se Fourier transfor­

mation) selecting the proper value for fkt depending on the 
results of comparing fo with the thresholds <t". 

We have used two typical adaptation parameters that arc 
widely used for data-dependent filtering estimated in the 
scanning window: the local variance aL and the quasirange 
Qu, i.e. , the difference of the p'th and the r'th order sta­
tistics estimated for the sample elements for current scan­
ning window position: Qu=fi'!l-li'/. Even for small val­
ues of M such as M = I or M = 2 and a proper threshold t" 
and a parameter aq, the obtained results for adaptive 
Wiener and Tikhonov·s regularization restoration proce­
dures [the model of Eq. (4)] according to the least MSE 
(LMSE) criterion outperformed any constant a used for 
traditional restoration techniques [see Eqs. (7) and (8)] in 
our tests. The quantitative data are coherent with this con­
clusion and they are presented in the next section. These 
successful results stimulated further investigations dealing 
with more complex and effective image restoration proce­
dures. 

The other approach uses locally adaptive robust nonlin­
ear filters as regularizing operators, performing a prelimi­
nary smoothing of images. This is stipulated by the fact that 
the goals of the regularization partially coincide with the 
aims of locally adaptive robust filtering, i.e., the noise sup­
pression and edge/fine detail preservation. Besides. the lo­
cally adaptive nonlinear filters are able to remove impulsive 
noise and, therefore. lo provide the conditions. which the 
traditional restoration procedures are designed for and ap­
plied to. For the considered situation, there are some pecu­
liarities worth noting. First. for blurred images. the edges 
become ramp and additional blurring that occurs as a con­
sequence of the filtering should be avoided. Furthermore, 
while removing the spikes, these algorithms should be able 
to preserve fine details. It is also known that unlike linear 
filters, nonlinear and adaptive filters in particular can not be 
described by the spatial frequency characteristics.17 Thu,, 
their influence on / ( w1., w1) can be estimated only approxi­
mately. The nonlinear prefiltering changes the statistical 
and spectral properties of the image and the noise. and the 
influence of the nonlinear prefilter has to be estimated be­
fore further image restoration. 

The reasons for their use are the following: 

• Adaptive filters characterized by essentially nonlinear 
properties should be applied only at the first stage of 
the image processing system, serving the task of im­
pulsive noise removal and that of suppressing other 
noise componems. 

• Some important characteristics of this kind of filters 
valuable for fu1ther image restoration can be studied 
and evaluated using numerical simulation data analy­
sis. 

Empirical tests have shown that the best performance 
was obtained by using the following filters in the prepro-

. d'fi d . fil 18 19 • h d cessmg stage: mo I e
1 

sigma- ~er. · ~enter we~f te 
median (CWM) filter,-0 FIR-median hybnd filters,- and 
adaptive filters 12 based on local variance and the quasirange 
as the adaptation parameter. According to the comparison 
of the parameter with the threshold, the use of a-trimmed 
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mean filtering 17 in the locally passive areas and the use of 
the modified sigma. CWM or FIR-median hybrid filters in 
the locally active areas provides the most promising results. 
The effect of changing the scanning window size and other 
parameters (for example. the weighting factor of the central 
pixel for CWM) as a function of the local value of the 
adaptation parameter were also studied. Some variants are 
considered in the next section, but the general recommen­
dations are the following. The use of large scanning win­
dow sizes (greater than 5 X 5 pixels) is not reasonable be­
cause it can lead to greater distortions in the neighborhood 
of details and edges. A 5 X 5 window is usually large 
enough to provide a reliable impulsive noise removal and 
an appropriate additive noise suppression efficiency with 
all reasonable noise quantities. 

Finally. the use of the sigma filter as the operator of 
restrictions is appropriate in some situations. As is 
known, 19 the standard sigma filter averages only the values 
belonging lo the interval [ / (k.l)-20-11 ;/(k.1)+20-11 ]. A 
modification exists for the case of a dominant influence of 
multiplicative noise. but both filters are sensitive to spikes. 
In an earlier paper, 18 we proposed and described the prop­
erties of the so-called modified sigma filter as being. in fact, 
an adaptive filter and possessing belier noise suppression 
efficiency in comparison to the standard sigma filter. 19 Fur­
thermore. our modification enables us to retain the mean 
level for homogeneous regions of the images and is able to 
remove spikes. If we suppose that all the noise component 
variances and P, arc equal to zero, then the sigma filter is 
an idempotent filter and, thus. the condition 9'l7=.7 of the 
previous section is satisfied. The same holds approximately 
for the local statistic Lee filter.22 but it is unable to remove 
impulsive noise. This is crucial for the iterative image res­
toration procedures when the application of nonlinear fil­
tering and linear restoration fo llow each other. The problem 
is how to choose the number of iterations and the filtering 
parameters. The numerical simulations for an 8-bit image 
have shown that usually performing three iterations is 
enough and further iterations do not improve the results, 
essentially because the quantization errors become the 
dominant factor limiting the possibilities of further image 
enhancement. It is often reasonable to take some other re­
strictions into account. in particular, to take care of the 
positivity of the intermediate and the final solutions as well 
as to retain the mean level of the reconstructed image. 

4 Numerical Simulation Results 

To illustrate the proposed methods and to compare them 
with existing ones. we used the test image '·Golden 
Bridge" shown in Figure I. It is a good choice for the test 
image in our case. since it contains a large homogeneous 
region (the sky). fine detai ls (the bridge and the yacht) and 
fragments with evident textural features (water surface. 
hills). Therefore. it is possible to investigate simultaneously 
different properties of the restoration algorithms: their abil­
ity to suppress noise, to preserve texture and to correct 
blurring effects for edges and fine details. It is also possible 
to evaluate the corresponding parameters characterizing 
these properties quantitatively. For the test image. we cal­
culated the following three parameters often used for com­
parison of efficiency and evaluation of filter properties.23 
Total relative root mean square error (RMSE) 

Fig. 1 Original image "Golden Bridge." 

-{ Lu[f(k,/) - /(k,1))2} 112 

e, - 2-u[f(k.l) - J(k,1)]2 

relative RMSE for active and passive areas respectively 
given by 

( 13) 

( 14) 

where Ap0 and Ap1, are the sets of pixels classified as 
belonging to locally active and locally passive image frag­
ments. We detected the edges and details of the original 
image by calculating the quasirange for every pixel and 
comparing it to the threshold (see Figure 2 where white 
pixels indicate the locally active fragments). Joint analysis 
of these three parameters enables us lo investigate the prop­
erties of the restoration algorithm from different points of 
view. The results were also analyzed visually. and the most 
interesting cases are presented in the figures. 

Let us discuss first of all the results for the model Eq. 
(4). The test image was blurred by a Gaussian function with 
the width 5 pixels at the level 0.1 and corrupted by inde­
pendent additive Gaussian noise with variance a-~ = 7 (sec 
Figure 3). Table I shows the resulting RMSEs for the res­
toration procedures and filtering algorithms. First, the re­
sults for the standard regularization procedure of Eq. (7) are 
presented for several values of the regularization parameter 
a = 0.0001, 0.001. 0.005. 0.05 (1 = 3 in all cases). Obvi-
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Fig. 2 Locally active and passive regions of the original image (Fig­
ure 1 ). 

ously, relatively small values of a result in a better edge/ 
detail restoration (see Figure 4 for a= 0.00 I) and the larger 
values of the parameter a provide better noise suppression 
for homogeneous regions (see Figure 5 for a= 0.05 ). The 
minimal \alue of the total RMSE is obtained for value a 
= 0.00 I. The adaptive procedure of Eq. ( 12 ). based on the 
parameter Qkl (with a 5X5 window, p= 18, r=8. Qthrc,h 
= 12, M = I, a 1 = 0.05. a 2 = 0.00 I) provides a better total 
RMSE than the standard regularization technique with op­
timal a. The RMSEs of both the active and the passive 

Fig. 3 Distorted image: blurring and additive noise. 

444 I Journal of Electronic Imaging I October 1997 I Vol. 6(4) 

regions are close to the best ones among all the tested stan­
dard regularization restoration algorithms. The result of the 
adaptive restoration procedure is shown in Figure 6. 

Table I gives also the results of using the controlled 
Wiener filter [Eq. (8)) to image restoration. Three values of 
a were tested: a=0.5, 1.0 and 10.0. The adaptive Wiener 
filter based on the quasirange Qk1 (N. p, rand Q1h,csh are 
the same as in the previous case) was also studied. Obvi­
ously, it also provides improved error con·ection compared 
to the standard Wiener filter ( a= 1.0). Figure 7 presents 
the image reconstructed by the standard Wiener filter and 
Figure 8 shows the results of the adaptive Wiener restora­
tion. Visual analysis confirms the advantages of the latter 
approach. ote. however. that for Wiener filtering (includ­
ing the adaptive version) it is necessary to know the image 
and noise spectra. but in practice they are usually unknown 
a priori. This is why these results are mainly demonstra­
tive; it is possible to get the spectral information only for 
test data. 

The next four items of Table I reflect the properties of 
the use of preliminary filtering and further regularization 
(t= 3, a= 0.000 I) to processing the test image. Four filter­
ing algorithms were studied: the CWM fi lter with the 
weight 11· of the central pixel equal to three and the cross 
3 X 3 window. The next two cases show the results of using 
the sigma filter with window sizes 5 X 5 and 3 X 3 as the 
prefilter. Finally. the last case considers the use of their 
adaptive combination as the prefilter. The adaptive filter 
determines the type of the region inside the filter window 
by calculating the quasi range (p = 18. r = 8) inside the 5 
X 5 square window and comparing it with the threshold 
Qthresh= 12. In locally passive regions. the image was fil­
tered by the sigma filter with a 5 X 5 square window, and in 
locally active regions the filtering is done ':>y the CWM 
using a 3 X 3 cross-shaped window with center weight 
equal to three. The resulting image of the last algorithm is 
presented in Figure I 0. Comparing the obtained quantita­
tive and visual results of the image processing techniques 
for regularization restoration (fi rst item of Table I and Fig­
ure 9), it is seen that the preliminary filtering is expedient. 
It provides noise suppression for locally passive regions 
and after this the restoration based on regularization cor­
rects the blurring well due to a small value of a. 

Finally, the iterative image restoration procedures of Eq. 
( 11) with and without the use of nonlinear filters as the 
operator of restriction, were analyzed. For practical reasons 
the pixel values of the reconstructed image were truncated 
to integers after every iteration. Table 2 contains the results 
for several variants of the algorithm, with different number 
of iterations. The first is the standard iterative restoration 
procedure [Eqs. (9) and ( I 0)) (see Figure 11 ). 

The other items of Table 2 compare the CWM filter. the 
sigma filter and an adaptive filter. The CWM filter used a 
3 X 3 cross-shaped window with central pixel weight equal 
to 3. The tests with the sigma-filter were done with a 5 
X 5 quare window. In the adaptive filtering, the sigma 
filter was used for the locally passive fragments and the 
CWM filter for locally active fragments. The quasirange 
was used as the adaptation parameter. and it was estimated 
using the 5X5 square window (p= 18, r=8, Qthresh= 12). 
Figure 12 shows the result of using the adaptive filter as the 
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Table 1 Quantitative results of reconstruction with different parameters. 

Parameters of Reconstruction Relative RMSE 

Item Restoration Algorithm Preliminary Filter e, e. eP 

Regularization, a= 0.0001, t = 3 0.792 1.870 

2 Regularization, a= 0.001, t= 3 0.783 1.160 

3 Regularization, a= 0.005, t = 3 0.870 0.990 

4 Regularization, a= 0.05, t = 3 1.030 0.950 

5 Adaptive regularization 1 0.787 0.950 

6 Wiener filter, a= 10 0.926 0.919 

7 Wiener filter, a = 1.0 0.717 1.060 

8 Wiener filter, a = 0.5 0.687 1.220 

9 Adaptive Wiener filter2 0.689 0.920 

10 

11 

12 

13 

Regularization, a= 0.0001, t= 3 

Regularization, a= 0.0001, t = 3 

Regularization, a=0.0001, 1= 3 

Regularization, a=0.0001, 1= 3 

CWM, cross 3 x 3 

Sigma, 5 x 5 square 

Sigma, 3 x 3 square 

Adaptive filter3 

1.110 

0.870 

0.900 

1.010 

0.824 

0.926 

0.802 

0.828 

0.740 

0.974 

0.873 

0.910 

0.862 

0.770 

0.783 

0.787 

0.767 

1.500 

1.150 

1.267 

1.148 

1Quasirange was used as the adaptation parameter (5 x 5 window, p = 18, r = 8, O,h,esh= 12). M= 1, I= 3, a 1 = 0.05, a 2 = 0.001. 
2Quasirange was used as the adaptation parameter (5 x 5 window, p = 18, r=8, O,hresh= 12), M= 1, a 1= 10, a 2 =0.5. 
3Quasirange was used as the adaptation parameter (5 x 5 window, p = 18, r = 8, O1h,esh = 12), sigma filter, square 5 x 5 window+ CWM, cross 
3 x 3 window, w= 3. 

preliminary filter and as the restriction operator. 
From Table 2 one can see that the more complex is 

image processing procedure used, the better is the quality 
of the resulting image compared to the standard linear tech­
niques described by Eqs. (7), (8), (9), and ( 1 O). When the 
adaptive filter is used both as a prefilter and as the operator 
of restrictions, the resulting RMSE is the smallest. How­
ever, increasing the number of iterations beyond three does 
not increase the performance of the filtering algorithm. 

Fig. 4 Result of restoration by regularization, a= 0.001. 

Note that the goal of the prefilter is to suppress the ex­
ternal noise essentially while preserving the information 
contained in the blurred image. On the other hand, the op­
erator of restrictions is used to avoid fluctuations caused by 
the amplification of the high-frequency components during 
the reconstruction. Thus, the prefilter has to be less detail­
preserving than the one used as the operator of restrictions. 

Let us now demonstrate the efficiency of the proposed 
reconstruction procedures for other noise models. The first 

Fig. 5 Result of restoration by the regularization method, a= 0.05. 
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Fig. 6 Result of the adaptive regularization method. 

Fig. 7 Results of filtering the distorted image (Fig. 3) by the Wiener 
filter. 
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Fig. B Results of filtering the distorted image (Fig. 3) by the adap­
tive Wiener filter. 

Fig. 9 Results of filtering the distorted image (Fig. 3) by the regu­
larization method, a= 0.0001 . 
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Fig. 10 Results of filtering the distorted image (Fig. 3) by adaptive 
preliminary filtering and the regularization method, a = 0.0001. 

case is the superposition of additive and impulsive noise 
(u;,=7. P, = 0.01). The corresponding blurred image is 
shown in Figure 13. The numerical results are shown in 
Table 3. The first row shows the results for the regulariza­
tion procedure with parameters t = 3 and a = 0.00 l. From 
Figure 14 one can obviously see that this method fails when 
spikes are present. We have analyzed the use of some ro­
bust non linear filters for preliminary processing of images 
before reconstruction using regularization. The tested filters 
are the CWM with the 3 X 3 cross window and center 
weight w = 3, the standard median with the 3 X 3 square 
window and their adaptive combination based on the cal­
culation of the quasi range and its comparison with a prede­
termined threshold. The latter variant gives the best result, 
which can be clearly seen from the fourth row of Table 3. 

Fig. 11 Results of filtering the distorted image (Fig. 3) by the stan­
dard iterative procedure. 

and also from Figure 15. which compared with Figure 14, 
contains no such artifacts that are produced during the 
regularization. 

The second pan of Table 3 contains the empirical data 
of the reconstruction by the iterative algorithm in the pres­
ence of additive noise and spikes. The tests were performed 
with different numbers of iterations and with different fil­
ters for the prefiltering and for the restriction operator. Fig­
ure 16 presents the resulting image for a simple iterative 
procedure, where the number of iterations is three. It can be 
observed that the spikes remain and degrade the image 
quality significantly. This can, however, be avoided by us­
ing preliminary filtering and an operator of restrictions. The 
results of using such an operator are shown in row 12 of 
Table 3 and Figure 17. Obviously. the spikes are removed 
and the image is enhanced essentially. From the results 

Table 2 Quantitative results of iterative reconstruction with additive noise. 

Parameters of Reconstruction One Iteration Three Iterations Five Iterations 

Item Preliminary Filter Restriction Operator e, e. eP e, e. eP e, e. eP 

0.970 0.856 1.326 1.240 0.881 2.097 1.540 1.026 2.844 

2 CWM, 3 X 3 cross, w~3 0.900 0.855 1.080 1.020 0.850 1.480 1.220 0.963 1.890 

3 CWM, 3 x 3 cross, w 3 0.930 0.852 1.180 1.010 0.819 1.540 1.150 0.866 1.860 

4 CWM, 3 x 3 cross, w= 3 CWM, 3 x 3 cross, w= 3 0.910 0.855 1.085 0.970 0.816 1.400 1.080 0.854 1.680 

5 Sigma, 5 x 5 square 0.880 0.854 0.980 0.960 0.975 1.240 1.140 1.010 1.550 

6 Sigma, 5 x 5 square CWM, 3 x 3 cross, w= 3 0.873 0.854 0.940 0.872 0.826 1.024 0.970 0.872 1.110 

7 Adaptive filter1 0.880 0.855 0.980 0.950 0.851 1.240 1.110 0.970 1.550 

8 Adaptive filter1 Adaptive filter1 0.880 0.857 0.960 0.850 0.814 0.971 0.890 0.852 1.030 

1Quasirange was used as the adaptation parameter (5 x 5 square window, p = 18, r= 8, Qthresh = 12). Sigma filter with a square 5 x 5 window 
was used in the passive areas and the CWM filter with a 3 x 3 cross window and central weight w = 3 was used in the active areas. 
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Fig. 12 Results of fi ltering the distorted image (Fig. 3) by an itera­
tive procedure where an adaptive filter was used as the preliminary 
filter and as the restriction operator. 

concerning the reconstruction by the iterative algorithm. it 
can be concluded that the use of both the preliminary image 
fi ltering and the operator of restrictions is expedient. In 
addition to that, the computational load does not become 
too extensive, because only a small number of iteration 
steps are needed for good results. 

We also studied the case of simultaneous influence of 
blurring and multiplicative noise with variance a~ 
= 0.0025. The initial blurred and noisy image is presented 
in Figure 18. The application of reconstruction techniques 
to this situation has no definite theoretical background, but 

Fig. 13 Distorted image: blurring, additive and impulsive noise. 

as shown by results of Kuan and Zervakis, it is nevertheless 
expedient. Certainly, in the considered situation the modi­
fication of filtering algorithms applicable to multiplicative 
noise suppression should be used. The numerical simula­
tion data for different noniterative (preliminary nonlinear 
filtering +regularization) and iterative (different combina­
tions of preliminary filtering and/or restriction operators) 
methods are presented in Table 4, which shows that prac­
tically in all cases the use of the modified sigma filter 18 

provides the best results. Concerning iteration number, the 
recommendations are similar to those for the previous 
cases. The result of preliminary image filtering by means of 
the sigma filter with the square 5 X 5 window and further 

Table 3 Quantitative results of reconstruction for additive noise and spikes. 

Parameters of Reconstruction Relative RMSE 

Item Restoration Algorithm Preliminary Filter Restriction Operator e, e. ep 

Regularization, a=0.001 , 1= 3 1.400 1.190 1.540 

2 Regularization, a=0.001 , t= 3 CWM, 3 x 3 cross, w= 3 0.550 0.678 0.426 

3 Regularization , a= 0.001, t 3 Median: 3 x 3 square 0.564 0.752 0.356 

4 Regularization, a = 0.001, t 3 Adaptive filter 1 0.524 0.679 0.361 

5 Iterative algorithm, one step 1.018 0.924 1.085 

6 Iterative algorithm, three step 1.166 0.976 1.293 

7 Iterative algorithm, five steps 1.343 1.090 1.510 

8 Iterative algorithm, one step CWM, 3 x 3 cross, w= 3 0.581 0.737 0.423 

9 Iterative algorithm, three steps CWM, 3 x 3 cross, w= 3 0.624 0.713 0.546 

10 Iterative algorithm, five steps CWM, 3 x 3 cross, w= 3 0.694 0.746 0.651 

11 Iterative algorithm, one step Adaptive filter1 Adaptive filter1 0.553 0.738 0.349 

12 Iterative algorithm, three steps Adaptive filter1 Adaptive filter 1 0.536 0.707 0.353 

13 Iterative algorithm, five steps Adaptive filter1 Adaptive filter1 0.553 0.733 0.356 

1 Median: 3 x 3 square in the passive and CWM with 3 x 3 cross and central weight w= 3 in the active areas. 
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Fig. 14 Results of filtering the distorted image (Fig. 13) by the regu­
larization algorithm, a 0.001. 

Fig. 15 Results of restoring the distorted image (Fig. 13) by prelimi­
nary filtering by an adaptive filter and the regularization method, a 
= 0.001. 

Fig. 16 Results of filtering the distorted image (Fig. 13) by a simple 
iterative procedure. 

Fig. 17 Results of restoring the distorted image (Fig. 13) by an 
iterative procedure, where an adaptive filter is used as the prelimi­
nary filter and as the restriction operator. 
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Fig. 19 Results of restoring the distorted image (Fig. 18) by prelimi­
nary filtering by the sigma filter and the regularization method, a 
= 0.001. 

regularization reconstruction (a= 0.00 I, t = 3) is repre­
sented in Figure 19. The use of another scheme (item 11) is 
demonstrated by Figure 20. The image is obtained using a 
preliminary modified sigma filter having a 5 X 5 square 
window that is also used as the restriction operator for it­
erative (three iterations) reconstruction. The edge preserva­
tion is almost equal, but the noise suppression efficiency at 
the homogeneous regions is worse. 

the use of a nonlinear filter as preliminary processing algo­
rithms and/or the operator of restrictions for iterative pro­
cedures, are able to provide the enhancement of images 
simultaneously distorted by blurring effects and corrupted 
by superposition of different kinds of noises: additive, mul­
tiplicative and impulsive. The recommendations concerning 
nonlinear filter type and parameter selection were presented 
and the goals of every processing algorithm were dis­
cussed. Quantitative data confirms the efficiency of the pro­
posed procedures. 

5 Conclusions 

The obtained results show that the image restoration tech­
niques, combined with the local adaptation approach and 

Table 4 Quantitative results of reconstruction for multiplicative noise. 

Item Restoration Algorithm 

Regularization, a = 0.001, t= 3 

2 Regularization, a = 0.001, t = 3 

3 Regularization, a = 0.001, t = 3 

4 Regularization, a = 0.001, t = 3 

5 Regularization, a = 0.001, t 3 

6 Iterative algorithm, one step 

7 Iterative algorithm, three steps 

8 Iterative algorithm, five steps 

9 Iterative algorithm, one step 

10 Iterative algorithm, three steps 

11 Iterative algorithm, five steps 

12 Iterative algorithm, one step 

13 Iterative algorithm, three steps 

14 Iterative algorithm, five steps 

Parameters of Reconstruction 

Preliminary Filter 

CWM, 3 x 3 cross, w=3 

Median: 3 x 3 cross 

Local statistic, Lee 3 x 3 square window 

Sigma, 5 x 5 square, 3 x 3 square window 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 
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Restriction Operator 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 

Sigma, 5 x 5 square 

Sigma, 3 x 3 square 

Sigma, 3 x 3 square 

Sigma, 3 x 3 square 

Relative RMSE 

er e. eP 

1.064 0.858 1.335 

0.981 0.846 1.160 

0.880 0.846 0.932 

0.839 1.090 0.945 

0.790 0.822 0.737 

1.280 0.964 1.658 

2.067 1.247 2.919 

2.842 1.621 4.075 

0.832 0.914 0.683 

0.895 0.983 0.737 

1.002 1.109 0.807 

0.828 0.908 0.684 

0.893 0.974 0.750 

1.010 1.106 0.837 
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Fig. 20 Results of restoring the distorted image (Fig. 18) by an 
iterative procedure where the sigma filter is used as the preliminary 
filter and as the restriction operator. 

Similar results were obtained for other variances of ad­
ditive and multiplicative noise and different degrees of im­
age blurring. The proposed algorithms seem to be more 
simple than the robust image reconstruction ones put for­
ward by Katsaggelos. Zervakis and Kwon. Comparing our 
approach to that described by Zervakis and Yenetsanopo­
ulos we emphasize that some ideas are similar but we used 
other filters characterized by better detail preservation 
properties and the Q-parameter for locally active area de­
tection (for adaptive filters). which is robust with respect to 
spikes. 
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