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Abstract. Mathematical morphology has produced an important 
class of nonlinear filters. Unfortunately, design methods existing for 
these types of filter tend to be computationally intractable or require 
some expert knowledge of mathematical morphology. Genetic algo­
rithms (GAs) provide useful tools for optimization problems which 
are made difficult by substantial complexity and uncertainty. Al­
though genetic algorithms are easy to understand and simple to 
implement in comparison with deterministic design methods, they 
tend to require long computation times. But the structure of a ge­
netic algorithm lends itself well to parallel implementation and, by 
parallelization of the GA, major improvements in computation time 
can be achieved. A method of morphological filter design using GAs 
is descnbed, together with an efficient parallelization implementa­
tion, which allows the use of massively parallel computers or inho­
mogeneous clusters of workstations. © 1997 5PIE and t5&T. 
1S1017-9909(97)01104-5] 

1 Introduction 

Nonlinear techniques are becoming an increasingly popular 
area of image and signal processing. Problems inherent in 
linear techniques cause poor and unacceptable performance 
in a multitude of applications. Among the many nonlinear 
techniques available. mathematical morphology' has 
emerged as one of the most important and useful, providing 
an important class of image and signal processing opera­
tors. These morphological operators are simple and the fil­
ters and techniques which have arisen out of these opera­
tors provide powerful tools, giving excellent results in a 
wide range of areas such as object recognition, edge detec­
tion, and noise reduction. Unfortunately, optimization 
methods existing for morphological filters and operators 
tend to have s_uch a high computational complexit;: that 
they are unrealizable on current computer hardware_--5 

Genetic algorithms6 provide powerful search and opti­
mization methods, which are based on the evolutionary 
processes found in nature. They provide tools for investi­
gating problems made difficult by substantial complexity 
and uncertainty. A major advantage of genetic algorithms is 
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that the underlying mechanisms are such that they lend 
themselves well to parallelization, allowing a significant 
reduction in computation time.7

·
8 

Previous work on the application of genetic algorithms 
to nonlinear filters includes Ref. 9, which utilized genetic 
algorithms in shape analysis; Ref. I 0, which used genetic 
algorithms in the optimization of binary Matheron­
representalion morphological fillers; Ref. I I, which used 
genetic algorithms in the configuration of stack filters; and 
Ref. 12, which utilized genetic algorithms in the optimiza­
tion of the structuring systems of function-set processing 
soft morphological filters. This paper shows how genetic 
algorithms may be applied in the optimization of standard 
function processing (gray scale) morphological filters. It 
also shows how these genetic algorithms can be imple­
mented in parallel on both massively parallel computers 
and clusters of loosely coupled workstations. 

The paper is divided into 12 sections. Sections 2 and 3 
give brief introductions 10 morphological filters and genetic 
algorithms, respectively. Section 4 describes the morpho­
logical filter design problem and then goes on to describe 
how a genetic algorithm can be utilized in morphological 
filter optimization. Section 5 shows the application of this 
morphological filter genetic algorithm to an actual optimi­
zation problem to prove its capabilities. Section 6 and 7 
introduce and review parallel genetic algorithms. In Sec. 8 
a new parallel genetic model is developed, and its imple­
mentation is described in Sec. 9. This section shows results 
in terms of optimization and parallelization efficiency, 
which attest to the algorithm being capable of excellent 
performance. Section IO shows some examples of applica­
tions of the developed design tool. 

2 Morphological Filters 

Morphological filters. applied 10 images, are nonlinear sig­
nal transformations that locally modify their geometric fea­
tures. They are based on the concepts of mathematical mor­
phology and are related to the basic operations of set theory 
and integral geometry. Morphological transformations em­
ploy specific sequences of neighborhood transformations to 
measure certain geometric features, which may be useful. 
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Structures within images can be analy1cd by selecting a 
filter able to interact properly with these structures. De­
scribing the structures of an image by linking geometrical 
patterns at various locations is an idea quantified with the 
concept of the structuring element. The structuring element 
is a set or function describing some simple shape. Applica­
tion of this structuring element allows various types of in­
formation to be obtained from the original image. 

The fundamental morphological operations are dilation 
and erosion. Generally, in practice. dilations and erosions 
are usually employed in pairs, either dilation of an image 
followed by the erosion of the dilated result, or ero ion of 
an image followed by dilation of the eroded result. In either 
case. the result of iteratively applied dilations and erosions 
is an elimination of specific image detail smaller than the 
structuring element without the global distortion of unsup­
pressed features. These iterative procedures constitute the 
so-called basic morphological filters. 

Morphological opening can be described as an erosion 
operation followed by a dilation of the eroded result. using 
the symmetric structuring element. with respect to the ori­
gin. 

The dual operation of opening is the closing operation. 
Morphological closing can be described as a dilation opera­
tion followed by an erosion of the dilated result. using the 
symmetric structuring element with respect to the origin. 

If the structuring element has a regular shape. both the 
opening and closing operations can be thought of as non­
linear filters. which smooth the contours of the original 
image. 

In general, morphological filters are lallice operators that 
are idempotent and increasing. 13 In this paper we restrict 
ourselves to the class of morphological filters known as 
structural operations and to their influence on binary and 
gray scale images. 

3 Genetic Algorithms 

Genetic algorithms provide optimization tools in areas that 
do not yield readily to standard approaches. 14 They are 
simple Lo implement and easy to understand. A genetic al­
gorithm (GA) is essentially an adaptive method that may be 
used to solve search and optimization problems using pro­
cesses that are based on the mechanics of natural se lection 
and natural genetics. In nature. populations evolve through 
many generations according to the principles of natural se­
lection and · ·survival of the fittest." By mimicking this 
process, genetic algorithms are able to "evolve" solutions 
to real world problems. provided that they have been suit­
ably encoded. 

In natural environments, there is competition between 
individuals in a population for available resources such as 
food. water, etc. In addition, there is often competition be­
tween members of the same species to attract a mate. Indi­
viduals that are most successful in surviving and auracting 
mates will produce relatively large numbers of offspring. 
Those individuab that perform poorly will tend to produce 
relatively few or even no offspring at all. This means that 
genetic material from highly adapted or "fit" individuals 
spreads to an increasing number of individuab in each suc­
cessive generation. The combination of beneficial charac­
teristics from different ancestors can sometimes produce 
"superfit'' offspring. which are more fit than either parent. 

In this manner, species undergo the process of evolution to 
become belier suited to their environment. 

GAs use an analogy of behavior in nature. A population 
of individuals is maintained. with each individual repre­
senting a possible solution to a given problem. Each of 
these individuals is assigned a "fitness value·· according to 
how well it wives the problem. (This is equivalent in na­
ture to assessing the effectiveness of an organism in com­
peting for available resources.) Those individuals with high 
fitness values are given opportunities Lo "reproduce," by 
"cross breeding" with other individuals in the population. 
producing new individuals as "offspring." These offspring 
share some features taken from each parent. The members 
of the population having lower fitness values are less likely 
to get selected for reproduction and so die out. 

Thus. a new population of possible solutions is created 
by the selection of the best performing individuals from the 
current generation and mating them to produce a new set of 
individuals to be tested. This new generation will contain a 
higher proportion of those characteristics possessed by the 
filler members of the previous generation. In this manner, 
over successive generations. beneficial characteristics are 
dispersed throughout the population, being mixed and ex­
changed with other beneficial characteristics. By favoring 
mating of the fitter individuals, the most promising areas of 
the search space are explored. Providing the GA has been 
well designed, the population will tend to converge to an 
optimal solution. 

For a more detailed overview of genetic algorithms the 
reader is referred to Refs. 15 and 16, which can be obtained 
at the internet site: http://www.cs.cf.ac.uk/Papers. Further 
recommended reading is Refs. 6, 14, 17. and I 8. 

4 Using Genetic Algorithms in the Optimization 
of Morphological Filters 

4.1 Optimization Problem 

The morphological filters under consideration in this paper 
are function processing or gray scale morphological 
filters, 19

•
20 comprising of iterated applications of the basic 

gray scale morphological operations of erosion and dila­
tion. including filters such as opening. closing. open­
closing. and close-opening. 

For a given filtering application. when considering the 
choice of morphological filter, there exist a vast number of 
alternative filters from which to choose. Factors such as 
size and shape of structuring element. sequence of morpho­
logical operator. etc .. all contribute to the variety of pos­
sible morphological filter choice. For example. considering 
the sequence of morphological operators. if the situation 
exist~ where the number of operators in the sequence is 
four. and the choice of morphological operators is from the 
set {erosion. dilation. do-nothing}. (where do-nothing is. es­
sentially, an identity operation). then there are a total of 31 
possible sequences of morphological operators (i.e .. 2° 
+2 1+2 2 +2'+24 =31. since some ~cquences. such as 
{erosion. dilation. do-nothing. do-nothing} and {do-nothing. 
do-nothing. erosion, dilation}. are equivalent). One then 
considers that for each of these possible sequences of mor­
phological operators there is an associated structuring ele­
ment. If. for example, this structuring clement has a 5 X 5 
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Fig. 1 Coding structuring elements: (a) coding a binary structuring 
element and (b) coding a gray scale structuring element. 

region of support. and the range of each position within the 
structuring element's region of support is Oto 4, then there 
are a total of 525 possible structuring elements from which 
to choose for each possible choice of morphological opera­
tor sequence. Thus, the total number of variations of mor­
phological operator sequence and structuring element, for 
this particular illustration, is 31 X (5 25). This gives an idea 
of the size of the search space for the morphological filter 
design problem. 

Genetic algorithms have been established as a valid ap­
proach to problems requiring efficient, effective, and robust 
search in complex spaces. It would therefore seem entirely 
appropriate to use genetic algorithms in the search for op­
timal morphological filters. 

In order for a GA to be used in the design of morpho­
logical filters, the problem has to be encoded for genetic 
search, i.e., the parameters of the optimization problem 
have to be mapped to a finite length string over some al­
phabet. As a rule, when coding a problem for genetic 
search, one should select the smallest possible alphabet that 
permits a natural expression of the problem (the principle 
of minimal alphabets 14

). This leads to the use of the binary 
digits {O, I} as the alphabet. How then should the param­
eters of the morphological filter design problem be coded? 

In the case of the basic morphological filters there are 
two basic parameters, the structuring element and the se­
quence of morphological filters. It is therefore necessary to 
code these parameters and map them to positions in the 
chromosome. 

4.2 Coding the Structuring Element 

Figures I (a) and I (b) show the general method for coding a 
structuring element. A binary structuring element is simple 
to code merely by mapping the Os and Is to their appropri­
ate positions in the structuring element portion of the chro­
mosome. Figure I (a) shows the coding of a binary structur­
ing element. For gray scale structuring elements, if the 
range of possible values for each position within the struc­
turing element's region of support is 0- /max, these integer 
values can be coded to binary strings, the length of which is 
llog2(/maJJ+ I binary digits. Each of these binary strings 
representing an integer value for each position within the 
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Table 1 Example of a code suitable for encoding positions both 
within and outside the structuring element's region of support . 

Corresponding value in position within structuring 
Binary Code element's overall dimensions 

000 
0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

* 
0 
1 

2 

3 

4 

5 

6 

structuring element's region of support can then be mapped 
to their appropriate positions in the structuring element por­
tion of the chromosome. Figure I (b) shows the coding of a 
gray scale structuring element. 

If the overall dimensions of the structuring element are 
fixed, it may be that not all positions within this structure 
are within the structuring element's region of support. In 
order for this to be taken into account in the GA optimiza­
tion, it is necessary for positions outside the structuring 
element's region of support but within the overall dimen­
sions of the structuring element (don' t-care positions, if 
you like) to be distinguished from those positions within 
the region of support. This must be incorporated into the 
coding technique. To code the positions outside the region 
of support, the possible range of values for each position 
within the overall dimensions of the structuring element 
now includes 0-Imax and* (don't care). An example of a 
suitable code, able to encode the range of possible values 
for each position within the structuring element's region of 
support as well as those special case positions which lie 
outside the region of support but within the overall dimen­
sions of the structuring element, is illustrated in Table I. 

4.3 Coding the Sequence of Morphological 
Operations 

When considering the sequence of morphological opera­
tions in the context of design of the basic morphological 
filters, there are two basic decisions to be made: (I) the set 
of individual morphological operators from which to 
choose, and (2) the number of morphological operations in 
the sequence. For example, for the close-open morphologi­
cal filter, the set of morphological operators necessary is 
{dilation, erosion} and the sequence length required is four, 
i.e .. four separate morphological operations: dilate-erode­
erode-dilate. 

In order that the GA should be able to perform optimi­
zation over the entire search space, it is necessary to in­
clude the do-nothing operation (which is, as mentioned pre­
viously, essentially an identity operation) to the set of 
morphological operations. This is due to the fact that the 
length of the sequence of morphological operations is fixed 
in the genetic algorithm, but it is desirable to include in the 
search space all the combinations of basic morphological 
operations from the simple erosion and dilation through the 
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Table 2 Example of a code for morphological operations, if choice 
is from {erosion, dilation, do-nothing}. 

Binary Code 

00 

0 1 

1 0 

1 1 

Morphological Operator 

Do-Nothing 

Do-Nothing 

Erosion 

Dilation 

close and open filters. to the open-close and close-open 
filters. Hence. if one were not to include the do-nothing (or 
identity) operation. then the search space would only in­
clude those filters that contain exactly four operations, each 
chosen from the set {erode. dilate}. and the search space 
would be severely restricted. So. as in the method discussed 
in this paper, the fundamental morphological operations are 
considered, and we have a set of morphological operations 
{dilation, erosion. do-nothing} from which to choose. If it is 
intended to search the range of basic morphological filters 
from the "do-nothing" tilter through the simple erosion 
and dilation operations to the close-open and open-close 
filters, a sequence length of four is required. In general, 
having a choice of X0 r individual morphological opera­
tions. the total number of choices of morphological opera­
tions to be considered in the GA optimization is in fact 
X0 pac,=X0 p+ 1 (i.e., X0 r plus the do-nothing operation). 
This number of morphological operations can be coded us­
ing a minimum of llog2(Xopac,JJ+ 1 binary digits. Each 
member of the set of morphological operations to be con­
sidered in the GA optimization can be coded to binary 
strings. and these strings can then be mapped to their ap­
propriate positions in the morphological sequence portion 
of the chromosome. Table 2 shows an example of codings 
for the set {dilation. erosion. do-nothing}. Figure 2 shows 
an example of the codings for a sequence length of four and 
the set of morphological operations as shown in Table 2. 

It is necessary to ensure that each possible sequence of 
operations is unique. i.e .. so that no combinations of opera­
tions in a sequence can be coded in more than one way, 
since some combinations of filter sequences are equivalent, 
e.g., {erode, dilate. do-nothing. do-nothing} and {do­
nothing, erode, do-nothing. dilate}. This is accomplished by 

Morphological Filter 

Close-Open 

Morphological Filter 

Close 

Sequence of Fw1damental Operations 

Sequence of Fundamemal Operations 

Fig. 2 Coding the sequence of operations. 

checking the sequence of operations portion of the chromo­
some after forming each new generation. and ensuring that 
all do-nothing operations are moved to the end of the se­
quence. 

4.4 Combining the Coded Structuring Element and 
Sequence of Morphological Operations 

To form the complete chromosome, it is simply a matter of 
concatenating the two separate coded binary strings for the 
structuring element and the sequence of morphological op­
erations. 

Hence. the size of the search space is fixed: the overall 
dimensions of the structuring elements, i.e .. the size of the 
region of the support and the maximum gray level values, 
and the maximum length of morphological operation se­
quence together with the choice of morphological opera­
tions. The GA is capable of searching for any gray level 
(function processing) morphological filter that is any com­
bination of four operations from the set {erode. dilate. do­
nothing}, which will use a structuring element (and it's 
symmetric counterpart, depending on the particular combi­
nation of morphological operations) chosen from all the 
possible variations within the overall region of support and 
maximum gray level value. Instances of filters employing 
structuring elements having gray level values of zero in the 
positions within the structuring element's region of support 
arc essentially function set processing morphological fil­
ters. 

4.5 Fitness Function 

The fitness function has to provide some measure of the 
GA ·s performance in a particular environment and is based 
on some objective function. The GA was used for the pur­
poses of this paper to search for the optimum filter for 
image processing problems, namely that of noise reduction. 
in the examples shown here. A common goal of optimiza­
tion in noise reduction in image processing is to minimize 
the mean absolute error (MAE) between a reference image 
and the filtered noisy version of this image. However. as 
the objective of this type of optimization is the minimiza­
tion of a cost function, it is necessary to map this objective 
function. g(.r). to a fitness function. /(.r). 

{ 
C ma., - g ( .r). 

J(x)= 
0 

g(.r) < Cma.x 

otherwise · 

Therefore. for the GA described in this paper: 

I. For each chromosome. the morphological tilter con­
figuration represented by that particular chromosome 
is obtained by a decoding process. i.e .. the reverse of 
the coding process described previously. 

2. The fitness function for each chromosome is calcu­
lated as follows: Let d I denote the mean absolute 
error between two signals .r and y. of length / . 

I ' 
c/1(.r.y) = -

1 
~ lx(n) - y(n)I. 

II I 

Let r. s. and r, denote the ideal signal. the corrupted 
(noisy) signal. and the filtered result using the filter con-
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(Erode - Dilate - Dilate - Erode) 

Filter Sequence 

5 x 5 Structuring Elemenl 

Fig. 3 Morphological filter used to test the GA. 

figuration represented by the i 'th chromosome, respec­
tively. Let u, denote the calculated fitness value for the 
filter configuration represented by the i'th chromosome. 
Then, if d 1(s,r) < d 1(r, .r). the filtered result is actually 
worse than the corrupted signal with respect to mean abso­
lute error and therefore the fitness value is set to zero. Oth­
erwise set the fitness value u,=d 1(s,r) - d 1(r, ,r), i.e., the 
improvement gained by the filtering using the morphologi­
cal filter configuration corresponding to that particular 
chromosome. 

5 Application of the GA 

In order to test whether or not the GA described was ca­
pable of finding the optimum morphological fi lter for a par­
ticular application, and to observe the convergence charac­
teristics. the GA was tested using a set of training images 
for which the optimum filter was known. An image that had 
been previously filtered with a known morphological filter. 
together with the original unfiltered image, were therefore 
used as the training set. Figure 3 shows the morphological 
filter used to filter the image. This filter was an open-close 
operation using a 5 X 5 spheroid structuring element. To 
further demonstrate the GA 's ability to find the optimum 
morphological filter, the region of support of the structuring 
element in the GA was set at 7 X 7. Thus, if the GA per­
formed correctly it would still find the optimum 5 X 5 struc­
turing element within its 7 X 7 region of support. 

Symmetric structuring element's are often employed for 
morphological transformations20 and it is thus possible, but 
not necessary, to restrict the search space by encoding only 
the left-hand comer of a structuring element. The other 
positions within the structuring element can then be deter­
mined symmetrically. 

To indicate how the GA proceeded toward the optimum 
morphological filter configuration, Fig. 4 shows the best 
morphological filters found by the GA at various stages 
through its process. It can be seen that by the I 00th gen­
eration the GA has determined the correct sequence of mor­
phological operations. By the 300th generation the GA has 
determined the correct overall size and shape of the region 
of support of the structuring element. By the 800th genera­
tion it can be seen that the GA has found the optimum 
morphological filter. 

6 Introduction to Parallel Genetic Algorithms 

Genetic algorithms have been applied successfully to the 
problem of morphological filter design. The only restriction 
to these approaches is the typically high demand of com­
putation power for genetic algorithms. The fitness value for 
the chromosomes is determined by the performance of its 
associated morphological filter. Therefore several basic fil-
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Generation = 0 Generation = 100 
0 • 0 0 0 • 0 
• 0 I I I O • 
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• 0 2 2 2 0 • . 0 I 2 I 0 . . . 0 0 0 . . . . . • • • . 

Brode 

! Dilate 

Dilate 

Brode 

Fig. 4 Illustration of progression of GA toward optimum. 

ter operations have to be computed for each chromosome 
of the population in every generation. The arithmetic com­
plexity O for the calculation of a single fitness value results 
in 

0=(11 X 11)(111 X m)M. 

Here 11 refers to the dimension of the filtered images, m 

refers to the dimension of the filter mask, and M is the 
number of performed morphological operations (erosion 
and dilation). For average problems, e.g., images of size 
5 I 2X 512 pixel, mask size 7 x 7, and 4 morphological op­
erations, this leads to a calculation time of more than 30 s 
(on a T805 transputer or a Sun Spare-station !PC), giving a 
total run time for a normal sequential GA (one population 
with 100 individual and 200 generations) of about 7 h. To 
achieve more acceptable computation times, which are re­
quired for real-time image analysis, it is necessary to use 
high performance parallel computers. 

With the recent advancement and availability of various 
parallel computers, the next promising step is to map the 
genetic algorithm model onto a parallel computing model. 
Two major forces are driving this task: (1) the theoretical 
point of view, which has the aim of developing the most 
efficient parallelisation techniques for genetic algorithms, 
and (2) the application point of view, which requires prac­
tical, useful algorithms. This means algorithms that do not 
need special hardware or software and which give satisfac­
tory speed-up on the available parallel computer system. 

To fulfill both requests, this work is split into two parl'i. 
First, a new theoretical model of a population organization 
for a parallel genetic algorithm is introduced and discussed. 
Second, it is implemented on both a massively parallel, 
high-performance computer and a common cluster of work­
stations, where the comparative performances are evalu­
ated. 
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(c) 

Fig. 5 Parallelization methods for parallel genetic algorithms: (a) 
standard parallel genetic algorithm, (b) coarse grained parallel ge­
netic algorithms, and (c) fine grained parallel genetic algorithm. 

7 Review of Parallel Genetic Algorithms 

In recenl years much research work has been done in lhe 
area of parallel genetic algorilhms. In general, three differ­
ent types of parallel genetic algorilhms have been intro­
duced. These approaches are known as standard or central­
ized, coarse grained or dislributed, and fine grained parallel 
genetic algorithms.21 23 (Other authors have different 
names for similar subdivisions in Refs. 7 and 24.) Figure 5 
shows the structure of these methods, which can be de­
scribed as follows. 

Standard parallel genetic algorithm. The standard 
model basically uses a sequential GA but does the genetic 
operations and fitness evaluation in parallel. Due to the fact 
lhat any two individuals of the population can be paired, 
lhe pairs must be selected sequentially, otherwise a fully 
connected graph of individuals is required, which would 
lead to an excessive communication overhead. In the selec­
tion step a knowledge of global information, such as mini­
mum, maximum. and average fitness values, is necessary to 
calculate the number of copies for each individual selected 
for the next generation. 

Coarse grained parallel genetic algorithms. Coarse 
grained parallel genetic algorithms divide lhe entire GA 
population into subpopulations and execute a standard GA 
on each. One subpopulation can be mapped onto a single 
processor or onto a group of processors using the parallel­
ization method described before. The single subpopulations 
exchange information (individuals) between each other. 
Different communication strategies, using blocking, non­
blocking, or virtual parallel communication, have been em­
ployed by various authors. 

Fine grained parallel genetic algorithms. Fine grained 
parallel genetic algorilhms distribute the entire population 
onto a low dimension, locally connected graph such as a 
grid. The GA acts on each member of the population in 
parallel. Evaluation. selection, and reproduction then occur 
only on a local basis between neighbors on the graph.7 

7.1 Search Efficiency 

It is importanl that all the parallelization models, which 
modify the sequential GA, do nol search less efficiently 
than the sequential model. 

The sequential GA is based on an idealized population 
model for which Holland6 and others25 have theoretically 
proven its validity. This model is based on the description 
of an evolutionary process which uses a random selection 
strategy, allowing a pairing between any two individuals. 
Miilhlenbein pointed out in Ref. 26 that the basic problem 
was already mentioned by Darwinn " lntercrossing plays a 
very important part in nature in keeping lhe individuals 
uniform in character. In animals which unite for each birth, 
but which wander a little, a new and improved variety 
might be quickly formed on any spot. ... A local variety 
when once thus fonned might subsequently slowly spread 
to other districts." In GAs we want a fast evolution and not 
to keep the individuals uniform. 

Miilhlenbein also mentioned that Darwin's conjecture of 
local populations with some isolation evolve faster than a 
large population was confirmed later by experiments and 
qualitative analysis.28 Nearly all experiments with a parallel 
genetic algorithm have shown that the search efficiency in 
distributed parallel genetic algorithms using subpopulations 
is higher than in sequential algorithms, which use only one 
entire population. 

7.2 Parallel Genetic Algorithms on Workstation 
Clusters 

Most of the parallel genetic algorithms that have been de­
veloped so far have been tested on homogeneous parallel 
computers. 

Bierwirth et al. published in Ref. 29 a realization of a 
parallel genetic algorithm which is based on a virtual 
shared memory communication environment. This concept 
has lhe advantage that the algorithms can be outlined in a 
powerful high level programming syntax, which allows for 
ease of design. The disadvantage is that the realization of a 
virtual shared memory concept on a workslation cluster 
suffers from the long offset time for any interprocess (in­
termemory) communication. which results with a poor par­
allelization efficiency. This rises dramatically with an in­
crease in the number of workstations that are used. 

Opatemy compared the parallel genetic algorithm for 
workstalion clusters, which he developed in his thesis,30 

with a similar algorilhm for massively parallel compulers. 
Without giving explicil run time results, he announced that 
his coarse grained genetic algorithm did not run with a 
satisfying efficiency due to lhe communication bottleneck 
on the workstation cluster. 

Both approaches lo implemenling parallel genetic algo­
rilhms on inhomogeneous parallel computers use common 
genetic models without adapting them to the special prop­
erties of the hardware. This results in a waste of computa­
tion power and longer run times. Until now there have been 
no parallel genetic models which can cope efficiently with 
inhomogeneous mulliuser parallel computers. 

8 General Parallel Genetic Algorithm 

All the models invented so far have a common bottleneck. 
lhe synchronization between either single subpopulalions or 
wilhin the processing of the following generation for a 
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Fig. 6 Population model of the GPGA. 

single subpopulation. Even if the synchronization can be 
made as a soft synchronization, like the handing-over of the 
baton in a relay race, where a certain interval is defined in 
which the communication has to take place, a loss of effi­
ciency could occur due to idle processors if, for example, 
the execution time for a generation differs dramatically be­
tween subpopulations. This could be caused by ( I) a differ­
ent processor load, a different processor speed or a different 
number of processors working on a subpopulation, or (2) a 
different number of instructions required to process the 
transition from one generation to the following for a sub­
population. The latter can be caused by different population 
sizes or different times needed to calculate a single fitness 
value. This is due to the fact that individuals can differ in 
their number of morphological operations and that. for off­
spring identical with one of their parents, the fitness value 
is simply copied and not calculated a second time. A new 
population organization and communication scheme has to 
be developed which does not suffer from the previously 
outlined disadvantages. The following subsections describe 
these models. 

8.1 Genetic Model 

In the general parallel genetic algorithm (GPGA) a popula­
tion is represented as a list of individuals ordered in tem1s 
of fitness values. Each individual has a rank defined by ih 
position in the list: the lowest for the last individual (worst 
fitness value) and the highest for the first one (fittest indi­
vidual). At any time, new individuals can be added to the 
list (sorted into the right position) or deleted. which may 
change the rank of other individuals. The access to the list 
of individuals is organized with a semaphore concept, so 
that different tasks can concurrently add. copy, or delete 
individuals. Due to this, the entire number of members 
within a population can change at run time. A control task 
monitors the population size and deletes individuals from 
the population if the population size grows over a thresh­
old. The selection of individuals to be deleted is made at 
random, with a higher probability for individuals with a 
lower rank to be selected, which is a .. survival of the fit ­
test" strategy. 

8.1.1 Population organization 

Each population is modified by four different types of tasks 
(Fig. 6) that can operate in parallel. The first type of task 
(reproduce) selects a couple of individuals as parents and 
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performs the genetic operations on them, calculates the fit 
ness value for the offspring, and sorts them back into th 
population. The second type of task (receive) involves col 
lecting messages from other subpopulations. These mes 
sages contain a single individual. its fitness value, and 
time value. The individuals are sorted into the ordere1 
population and the time value is used to modify the optima 
population size (see Sec. 8.3). The third type of task (send 
involves transmitting copies of individuals to other sub 
populations. The selection from the population is made i1 
the same way as the one for selecting parents. The targe 
population is chosen at random from a given set of sub 
populations. Depending on the network, this set could con 
tain only local neighborhood populations (for a grid array 
or all subpopulations (for bus networks). The fourth type o 
task (kill) is used in supervising the population size. 

8.1.2 Selection, genetic operations, and 
reproduction 

The reproduction task performs selection parents, evalua­
tion of fitness values, and reproduction. The probability fo1 
individuals being selected for reproduction is made refer­
ring to their rank and not to their fitness value by selectinf 
parents at random while using a skewed probability distri­
bution, preferring fitter individuals to be selected. This ha• 
the advantage that no fitness scaling is necessary to over­
come the problem of unpleasant fitness distributions, suet 
as an accumulation of good fitness values close togethe1 
and some poor values at the far end of the fitness range 
Individuals selected as parents are copied and genetic op­
erations are performed to produce offspring. The fitnes• 
value of the offspring is calculated and they are sorted back 
into the population, which has now increased by two indi­
viduals. This procedure of reproducing is repeated until a 
termination condition stops the algorithm. This mechanism 
allows individuals from different generations to crossove1 
or the same parents to have more than one pair of offspring. 

8.2 Levels of Parallelism 

The parallelization of the algorithm takes part on three dif­
ferent levels. Each of these levels can be scaled to different 
sizes to match the algorithm as much as possible to the 
underlying parallel computer. The first level of paralleliza­
tion is based on a number of subpopulations calculated m 
parallel. The second level consists of concurrent working 
reproduction tasks (Fig. 6). These task do not have any 
supervising master and are working completely asynchro­
nously. If an appropriate parallel computer is available in 
the third level of parallelization, each of the tasks calculat­
ing the fitness values can employ more processors for cal­
culating the fitness values of the offspring. Here a data 
parallel concept used. 

8.3 Synchronization and Communication Scheme 

The size for each population is allowed to vary within a 
given range. If the time value, which represents the average 
time needed to calculate a fitness value multiplied by the 
actual population size for the processor sending the mes­
sage, is less than the value on the local processor the popu­
lation size is decreased, otherwise it is increased. This 
mechanism implies a load balance to achieve a soft syn-
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chronization between subpopulations. The ratio of sending 
individuals is controlled with a function having the calcu­
lation time for a single fitness value and a free eligible 
value as parameter, so it can be adapted to the avai lable 
communication power of the network used. A dramatic 
change of the communication power (e.g., a complete tem­
porary disconnection of a processing node) between pans 
of the parallel computer just leads to an increase in the 
isolation of the effected subpopulations. but does not dis­
turb the run of the algori thm. 

The fault of a processing node results in the loss of the 
individuals contained in the affected populations and not in 
the termination of the whole algorithm, which is a partial 
fault tolerance. 

9 Implementation of the GPGA 

9.1 Hardware Requirement and Scalability 

The avai lable parallel computer is the deciding factor for 
the grade of parallelization in the different levels. Spl itting 
up the entire population into subpopulations leads to better 
optimization results, but can only reduce the run time to a 
definite limit, because each subpopulation still has to repro­
duce itself a couple of times to allow the genetic scheme to 
improve the fitness values to the desired result. If the num­
ber of subpopulations rises over a cenain level, it will be 
more likely to have similar subpopulations searching for 
the same optimum in different subpopulations, leading to 
redundancy and poor efficiency. The communication net­
work demanded for the subpopulation method needs to deal 
with a load depending on the time it takes lo calculate a 
single fitness value and the number of subpopulations. Ex­
perimentally, it was found that each subpopulation should 
be able to send a message of I 02 lo IO 1 bytes of individual 
and additional information. at least after a number of cal­
culated fitness values equal to its population size. If the 
processing nodes are connected with a single bus. the avai l­
able bus capacity should equal the sum of the requirements 
of all subpopulations. 

The second level of parallelization can be used with a 
reasonable efficiency up to a number of processing nodes 
less than half of the population size, where only individuals 
for the current generation can be calculated in parallel. This 
causes the best possible ac hievable speed-up factor to be 
less than the number of individuals within a populat ion. It 
was experimentally found that the connection between the 
master and each worker should be able to transfer a mes­
sage in a time slot. which is less than I 0% of the time 
needed to calculate a single fitness va lue. 

If a single processing node cannot cope with the prob­
lem of calculating fitness values. for example. if the avail­
able memory is not big enough to store a whole image or 
further processing nodes are avai lable, then the data paral­
lel method can be used. The maximal number of efficiently 
used processing nodes depends strongly on the size of the 
image and the communication capacity between the nodes. 
It is also possible to use a pipeline concept for calculating 
the sequence of filter operations on different processing 
nodes. This has the disadvantage of the filtered images be­
ing transferred between different nodes. which is only ef-

fcctive if the pipel ine elements are connected with a high 
speed communication structure. 

In general. it has been found that the total amount of 
processing nodes that can theoretically be used to calculate 
an average optimiLation problem, with an acceptable effi­
ciency. sums up to several thousand processing nodes. This 
number is based on experiments and should give an impres­
sion of the possible scalability. Tests have shown that I 02 

to 101 is a satisfactory value for the number of subpopula­
tions with a population size of approx imately I 02 individu­
als. The appropriate number of processing nodes calculat­
ing a single fitness value with an efficiency above 0.85 
results in I 02 using a transputer network. It is not assumed 
that a generalization of this value to other GAs or all pos­
sible morphological tasks is always allowed. 

9.2 Test Hardware 

The computers used to test the algorithm can be divided 
into massively parallel computers and into loosely coupled 
clusters of processing nodes (workstations). 

Two massively parallel computer systems have been 
used, a Parsytec Super Cluster and a Parsytec Giga Cluster. 
Both located at the Technical University Hamburg­
Harburg. The Super Cluster consists of 128 identical T805 
transputers modules (30 MHz. 4 Mbytes). A torus topology 
is used as the interconnection structure. The operating sys­
tem is a single user multiple processing system. This com­
puter is a strictly homogeneous parallel computer. The 
Giga Cluster is based on 128 M60 I (PowerPC) processors 
with 16 Mbyte local RAM memory. The processors are 
interconnected in a grid topology, using 256 transputers as 
communication processors. This sums up to a total semi­
conductor memory capacity of I .0 Gigabyte and a peak 
performance of 10 GFLOPS. 

The second type of parallel computer is a cluster of 
workstations. One cluster (divided into five subclustcrs) is 
made up of I 00 Sun Spare-station Is and a second cluster 
contains IO Sun Sparc-station20s or multiprocessor Sun 
Spare-stations. These clusters are shared with other users. 

9.3 Software Environment 

The algorithms are written in ISO C and make use of spe­
cial libraries for parallel processing. While on the worksta­
tion cluster and on the PowerPC computer. only the PYM 
message passing environment31 was used. On the transputer 
based system. the algorithms have been integrated in the 
parallel image processing <,ystem PIPS (Ref. 32) using 
ParC. 

9.4 Assessment of the Results 

9.4.1 Inhomogeneous multiuser parallel computers 

Measuring values for speed-up or efficiency on inhomoge­
neous computer systems is complicated. It is not possible to 
run an algorithm in different scales under the same envi­
ronment. The ratio between the computation power and the 
number of processors is not linear and the behavior of the 
algorithm is also dependent on the mapping onto the ma­
chine. If the parallel computer has a multiuser operating 
system. the available computation and communication 
power changes between different test runs and also during a 
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Fig. 7 Fitness values on (a) a workstation cluster and (b) a massively parallel computer (Super 
Cluster). 

single run. In this case, it is not possible to repeat runs 
under the same circumstances. This is the case on worksta­
tion clusters. To compare the results, the load of the cluster 
that occurs as a result of other users is classified into three 
types: " heavy" for peak hours, "normal" for average 
times, and " low" for weekend and late night times. All 
results published here are calculated during low load times, 
which means that the used CPU time nearly equals the real 
run time (allowance less than 10%). 

9.4.2 Quality of a genetic search algorithm 

Although every GA has, theoretically, the ability to find the 
optimal solution for the given problem, it is not possible to 
recognize it (if the optimum is not known a priori) and it 
might take an intractable period of time for the search. It is 
quite common to stop the GA after a termination condition 
is reached and take the best individual at that time as a 
(sub)optimal result. To test the GPGA, three different ter­
mination conditions have been used: (I) a desired fitness 
value. (2) a maximal number of offsprings to calculate, and 
(3) a maximal real run time. Nex t to the termination con­
ditions used, the chosen values for the threshold are also 
decisive factors. Some parameters of a GA lead very 
quickly to relatively good values but take a long time to 
achieve fitness values close to the optimum. This means 
that it is quite complicated and needs a lot of expert knowl­
edge if GAs are to be compared and assessed in general. 

Even if the real time values seem to be the most impor­
tant ones for a user, they do not give a fair comparison on 
multiuser machines due to the different load of the comput­
ers. 

9.5 Results 

9.5.1 Search efficiency 

Figure 7 shows the maximal fi tness values achieved by the 
GPGA for a standard task and plotted against the CPU time 
needed to calculate them. Figure 7(a) is measured on the 
workstation cluster and Fig. 7(b) the Super Cluster. Com­
paring the different curves, which resume from runs with 
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different number of processing nodes used, it can be seen 
that the time needed to achieve certain fitness values de­
creases when the number of nodes increases. Due to differ­
ent behaviors in time, a general speed-up diagram is of no 
use. For example, the best value of 95.9 is already reached 
on 90 workstations before the initialization (calculation of 
the fitness values of the random start population) is finished 
on a single workstation, while for the short period between 
IOOO and 1400 s the run with four workstations had a better 
maximal fitness value than the one with ten workstations. 
This is reasonable because of the stochastic elements in the 
genetic methods, which allow any population at any time to 
produce excellent offspring. Considering the performance 
over longer time intervals, it can be seen that a general 
improvement of the performance is proportional lo the 
number of workstations used. It is even more important that 
runs with a few subpopulations do not reach a satisfactory 
fitness al all. 

9.5.2 Parallelism efficiency 

The diagram in Fig. 8(b) shows parallelization efficiencies 
for the Super Cluster and the workstation cluster. The val­
ues for the workstation cluster are calculated as 

f I 
eff= - · i = 1,2,4, I 0,20.40.90. 

i X r,' 

where i is the number of workstations used and r, is the 
averaged CPU time needed to calculate the first 2000 fit­
ness values. The graph for the massively parallel Super 
Cluster is made up in the same way, using the number of 
calculated fitness values after I 000 s in relation to the num­
ber of processing nodes used. It is obvious that the effi­
ciency for the Super Cluster decreases due to longer com­
munication paths between different processing nodes. 
which leads to an increased communication load on nodes 
in between the paths while the efficiency for the worksta­
tion cluster seems to have a stochastic behavior. Figure 8(a) 
displays the efficiency values resulting from the Giga Cius-
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Fig. 8 Speed-up for (a) the Giga Cluster and for (b) the workstation cluster and the Super Cluster. 

ter. These values are greater than I (super linear) and do 
not decrease when the number of processing nodes in­
creases. The first is due to a constant task for the user 
interface, which does not increase in proportion with the 
number of processing nodes. The latter can be explained 
with the powerful interconnection network between the 
nodes, which does not provide an additional load for the 
computing units. 

The overall high values certify the algorithm on both 
parallel systems having a very good performance. 

10 Results on Tampere University of Technology 
Images 

10.1 Tampere University of Technology Database 

Within the ESPRIT basic research action nonlinear and 
adaptive techniques (NAT) in digital image processing. 
analysis, and computer vision. ESPRIT BRA 7130, a data­
base of test images. has been established at the Tampere 
University of Technology (TUT) in Finland.33 [The images 

Table 3 Results of filtering TUT test images with morphological filters. Signal to noise ratio (SNR), 
peak SNR (PSNR). mean absolute error (MAE), and mean squared error (MSE). 

Noisy image Filtered image 

Image SNR PSNR MAE MSE SNR PSNR MAE MSE Comments 

Airm0s3I01 3.03 15.60 26.46 1788.42 11 .57 24.14 11 .34 254.64 

Airm0s9I01 9.01 21.58 10.33 451.13 15.24 27.80 6.96 107.68 

Airm0s15I01 15.01 27.59 4.93 113.30 16.83 29.41 5.22 74.72 

Airm0s3I02 2.98 15.56 27.79 1807.93 11 .76 24.34 11.17 239.25 

Airm0s9I02 9.02 21.59 12.83 450.01 14.52 27.10 7.81 126.67 

Airm0s15I02 15.00 27.57 6.34 113.75 15.93 28.51 6.30 91.93 no improvement 

Airm0s3I10 3.02 15.60 33.74 1790.89 10.14 22.72 13.96 348.20 

Airm0s9I10 9.01 21.58 16.82 451.37 12.99 24.99 10.08 205.85 

Airm0s15I1 0 15.01 27.58 8.42 113.46 15.37 27.95 7.24 104.41 

Brim0s3I01 2.99 16.36 23.44 1503.54 11 .54 24.90 10.74 210.26 

Brim0s9I01 8.99 22.36 9.38 377.90 13.48 26.85 7.50 134.44 

Brim0s 15101 14.98 28.35 4.53 95.29 14.99 28.35 4.52 95.12 no improvement 

Brim0s3I02 2.98 16.34 25.71 1508.07 10.95 24.32 11 .40 240.46 

Brim0s9I02 9.03 22.39 11 .74 374.53 13.42 26.79 8.13 136.16 

Brim0s 15102 14.99 28.36 5.82 95.11 14.99 28.36 5.82 95.02 no improvement 

Brim0s3I10 3.00 16.37 31.00 1498.81 9.70 23.07 13.54 320.54 

Brim0s9I10 9.01 22.38 15.46 375.96 12.26 25.63 10.10 178.05 

Brim0s15I10 15.01 28.37 7.75 94.74 15.01 28.37 7.74 94.71 no improvement 
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Fig. 9 Filter results; extracted parts from the test image Airm0s9101 : 
(a) original image, (b) noisy image, (c) rank-order morphological fil­
tered, (d) median filtered, (e) standard-morphological filtered, and (I) 
linear filtered (normalized average). 

can be obtained from the ftp server sigftp.cs.tut.fi 
(directory/pub/nat/imagedatabase).] This database should 
allow a comparison of several families of nonlinear filter 
classes. 

Table 4 Comparison between different filter classes; filtered image 
is Airm0s9101 from the TUT database. 

Filter SNR PSNR MAE MSE 

none 9.013 21.587 10.335 451 .134 
Linear (average) 11 .288 23.862 11 .602 281.006 
Median 13.626 26.200 8.308 160.341 
Standard 12.759 25.333 8.780 204.538 
Morphological 
Rank-order 15.240 27.820 6.960 107.681 
Morphological 
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Table 3 presents the results for filtering the images \Nith 
a new class of nonlinear filters currently under development 
at the University of Strathclyde, known as rank-order mor­
phological fi lters.34·35 

Rank-order morphological operations are a class of non­
linear operations that contain as a subclass the class of ba­
sic structural morphological operations. The basis for rank­
order morphological operations is that the maximum and 
minimum operators of the morphological operations of di­
lation and erosion, respectively, are replaced with a rank­
order operator. If all the gray level values within the struc­
turing element's region of support are zero, i.e., the 
structuring element is "flat." the rank-order morphological 
operation reduces to a simple rank-order operation. Also, 
when the rank-order operator is set to unity, the basic rank­
order morphological operations of rank-order dilation and 
rank-order erosion reduce to the basic morphological op­
erations of dilation and erosion, respectively. 

The size of the structuring element is limited to a maxi­
mal size of 3 X 3 pixels. The optimization of the filter is 
done with the general parallel genetic algorithm, as de­
scribed previously. The filters are optimized on a subset 
(size JOO X I 00 pixels) of the entire image and finally ap­
plied on the complete image. The optimization is done on a 
combination of the mean absolute error (MAE) and mean 
square error (MSE) values. The left side of Table 3 con­
tains the value for the corrupted image and the right side 
for the filtered one. 

10.2 Comparison Between Different Filter Classes 

To give an impression of the different performances of dif­
ferent filter classes in a particular task. a test image with a 
medium intensity of impulsive noise (Airm0s910 I) was fil­
tered with different filters. Figure 9 shows the original and 
filtered results, and Table 4 contains the appropriate error 
values. Four fi lter types have been used: (I) a linear aver­
age filter, (2) a standard morphological filter, (3) a median 
filter filter. and (4) a rank-order morphological filter. For all 
filters the window (structuring element) size was limited to 
3 x 3 pixels. The linear average filter has shown the poorest 
performance. This is because linear filters are optimal for 
Gaussian noise but cannot cope adequately with different 
types of noise. The median filter performed slightly better 
than the standard morphological filter and the rank-order 
morphological filter has clearly shown the best results. 
Both morphological filters have been designed with the 
GPGA. 

11 Conclusions 

In this paper an optimization method for a particular class 
of nonlinear fi lters, morphological filters, has been de­
scribed. This method uses a genetic algorithm in the opti­
mization process. The optimization is based on a search for 
the optimum filter within the space of all possible filters. 
Due to the complex shape and the huge size of the search 
space, all deterministic.: design methods tend to be compu­
tationally intractable. It has been shown that GAs provide a 
simple tool in complex search problems without making 
any particular assumptions about the correlation of the 
search space. The expense in computation time for the GA 
has been limited to an acceptable duration by developing a 
parallel genetic model , which allows the use of either high-
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:rformance massively parallel computers or larger work­
ation clusters in an very efficient way. Test results lo 
·ove both the speed-up and the design quality have been 
1own. Methods of optimizing further classes of nonlinear 
lters have already been developed using similar methods. 
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