Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16596
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSwamy, Sondekola Rudra-
dc.contributor.authorBreaz, Daniel-
dc.contributor.authorVenugopal, Kala-
dc.contributor.authorKempegowda, Mamatha Paduvalapattana-
dc.contributor.authorCotîrl?, Luminita-Ioana-
dc.contributor.authorRapeanu, Eleonora-
dc.date.accessioned2024-08-29T05:43:37Z-
dc.date.available2024-08-29T05:43:37Z-
dc.date.issued2024-
dc.identifier.citationVol. 12, No. 9en_US
dc.identifier.issn2227-7390-
dc.identifier.urihttps://doi.org/10.3390/math12091325-
dc.identifier.urihttps://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16596-
dc.description.abstractWe investigate some subclasses of regular and bi-univalent functions in the open unit disk that are associated with Lucas-Balancing polynomials in this work. For functions that belong to these subclasses, we obtain upper bounds on their initial coefficients. The Fekete–Szegö problem is also discussed. Along with presenting some new results, we also explore pertinent connections to earlier findings. © 2024 by the authors.en_US
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.subjectBi-Univalent Functionsen_US
dc.subjectLucas-Balancing Polynomialsen_US
dc.subjectRegular Functionsen_US
dc.subjectSubordinationen_US
dc.titleInitial Coefficient Bounds Analysis for Novel Subclasses of Bi-Univalent Functions Linked with Lucas-Balancing Polynomialsen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
File SizeFormat 
mathematics-12-01325-v2.pdf333.53 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.