Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNachiappan, Balusamy-
dc.contributor.authorRajkumar, N-
dc.contributor.authorKalpana, C-
dc.contributor.authorMohanraj, A-
dc.contributor.authorPrabhu Shankar, B-
dc.contributor.authorViji, C-
dc.date.accessioned2024-08-29T05:43:38Z-
dc.date.available2024-08-29T05:43:38Z-
dc.date.issued2024-
dc.identifier.citationVol. 3en_US
dc.identifier.issn2953-4917-
dc.identifier.urihttps://doi.org/10.56294/dm2024359-
dc.identifier.urihttps://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16602-
dc.description.abstractEffective presentation slides are crucial for conveying information efficiently, yet existing tools lack content analysis capabilities. This paper introduces a content-based PowerPoint presentation generator, aiming to address this gap. By leveraging automated techniques, slides are generated from text documents, ensuring original concepts are effectively communicated. Unstructured data poses challenges for organizations, impacting productivity and profitability. While traditional methods fall short, AI-based approaches offer promise. This systematic literature review (SLR) explores AI methods for extracting data from unstructured details. Findings reveal limitations in existing methods, particularly in handling complex document layouts. Moreover, publicly available datasets are task-specific and of low quality, highlighting the need for comprehensive datasets reflecting real-world scenarios. The SLR underscores the potential of Artificial-based approaches for information extraction but emphasizes the challenges in processing diverse document layouts. The proposed is a framework for constructing high-quality datasets and advocating for closer collaboration between businesses and researchers to address unstructured data challenges effectively. © 2024; Los autores.en_US
dc.language.isoenen_US
dc.publisherData and Metadataen_US
dc.publisherEditorial Salud, Ciencia y Tecnologiaen_US
dc.subjectAutomated Presentation Generationen_US
dc.subjectContent-Based Powerpointen_US
dc.subjectCsv File Processingen_US
dc.subjectData Preprocessingen_US
dc.subjectData Visualizationen_US
dc.subjectFeature Extractionen_US
dc.subjectInformation Extractionen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectPython Pptx Moduleen_US
dc.subjectSlide Creationen_US
dc.subjectText Document Analysisen_US
dc.subjectUnstructured Data Analysisen_US
dc.titleMachine Learning-Based System for Automated Presentation Generation From Csv Data [Sistema Basado En Aprendizaje Automático Para La Generación Automatizada De Presentaciones A Partir De Datos Csv]en_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.