Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16763
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeelamraju, Pavan Mohan-
dc.contributor.authorMuniraj, Inbarasan-
dc.date.accessioned2024-12-12T09:29:58Z-
dc.date.available2024-12-12T09:29:58Z-
dc.date.issued2024-
dc.identifier.isbn9781957171371-
dc.identifier.urihttps://opg.optica.org/abstract.cfm?URI=3D-2024-DW1H.3-
dc.identifier.urihttps://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16763-
dc.description.abstractWe demonstrate that the combination of Super Linear Iterative Clustering and Earth Mover’s Distance efficiently segments tumours from the MRI dataset. Despite using a smaller training dataset our approach achieves an accuracy of 86.2%. © 2024 The Author(s).en_US
dc.language.isoenen_US
dc.publisherOptica Imaging Congress 2024 (3D, AOMS, COSI, ISA, pcAOP)en_US
dc.publisherOptical Society of Americaen_US
dc.subjectMagnetic Resonance Imagingen_US
dc.subjectBrain Tumor Classificationsen_US
dc.subjectIterative Clusteringen_US
dc.subjectSmall Trainingen_US
dc.subjectTraining Dataseten_US
dc.titleSlice: Combined Super Linear Iterative Clustering and Earth Mover’S Distance for Brain Tumour Classificationen_US
dc.typeArticleen_US
Appears in Collections:Conference Papers

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.