Please use this identifier to cite or link to this item:
https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16763
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Neelamraju, Pavan Mohan | - |
dc.contributor.author | Muniraj, Inbarasan | - |
dc.date.accessioned | 2024-12-12T09:29:58Z | - |
dc.date.available | 2024-12-12T09:29:58Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9781957171371 | - |
dc.identifier.uri | https://opg.optica.org/abstract.cfm?URI=3D-2024-DW1H.3 | - |
dc.identifier.uri | https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16763 | - |
dc.description.abstract | We demonstrate that the combination of Super Linear Iterative Clustering and Earth Mover’s Distance efficiently segments tumours from the MRI dataset. Despite using a smaller training dataset our approach achieves an accuracy of 86.2%. © 2024 The Author(s). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Optica Imaging Congress 2024 (3D, AOMS, COSI, ISA, pcAOP) | en_US |
dc.publisher | Optical Society of America | en_US |
dc.subject | Magnetic Resonance Imaging | en_US |
dc.subject | Brain Tumor Classifications | en_US |
dc.subject | Iterative Clustering | en_US |
dc.subject | Small Training | en_US |
dc.subject | Training Dataset | en_US |
dc.title | Slice: Combined Super Linear Iterative Clustering and Earth Mover’S Distance for Brain Tumour Classification | en_US |
dc.type | Article | en_US |
Appears in Collections: | Conference Papers |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.