Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16827
Title: Synthesis of a Novel Albesitiv Light Weight Hea Coating on Ss316 Using Atmospheric Plasma Spray Process
Authors: Singh, Aman
Akhil, U V
Kishan, S N
Anoosa Sree, R
Radhika, N
Rajeshkumar, L
Keywords: Light Weight High Entropy Alloy
Mechanical Alloying
Mechanical Property
Metallurgical Characterization
Thermal Spray
Tribology
Issue Date: 2024
Publisher: Heliyon
Elsevier Ltd
Citation: Vol. 10, No. 16
Abstract: High Entropy Alloys (HEAs) are currently a subject of significant research interest in the fields of materials science and engineering. They are rapidly evolving due to their exceptional properties, and there is considerable focus on expanding their application potential by developing HEA coatings on various substrate materials. This area of study holds promise for advancing technology and innovation in diverse industries. In this study, a novel equiatomic AlBeSiTiV Light Weight HEA was synthesized via mechanical alloying and was sprayed on the substrate SS316 by the thermal spray process. The microstructural characterization revealed that synthesized HEA had a major FCC phase and the average coating thickness was observed to be 150 ?m. The average microhardness was measured to be 975 ± 13 HV for the coating which was five times than the substrate. The coated samples' wear resistance was found out using a pin-on-disc apparatus by varying the wear process parameters and Taguchi's L27 Orthogonal Array was used to interpret the parametric influence on wear rate. ANOVA and regression analysis revealed applied load to be the most significant factor followed by distance and velocity. The major wear mechanisms observed were adhesion abrasion and oxidation, and the formation of tribolayer was observed at higher velocity and distance. © 2024
URI: https://doi.org/10.1016/j.heliyon.2024.e35999
https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16827
ISSN: 2405-8440
Appears in Collections:Journal Articles

Files in This Item:
File SizeFormat 
PIIS2405844024120300.pdf26.6 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.