Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16881
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarimuthu, Senbagavalli-
dc.contributor.authorDebnath, Saswati-
dc.contributor.authorRamachandran, Saravanakumar-
dc.contributor.authorParasuraman, Manikandan-
dc.contributor.authorMenon, Satish-
dc.date.accessioned2024-12-12T09:38:18Z-
dc.date.available2024-12-12T09:38:18Z-
dc.date.issued2024-
dc.identifier.citationVol. 3en_US
dc.identifier.issn2953-4860-
dc.identifier.urihttps://doi.org/10.56294/sctconf2024.1107-
dc.identifier.urihttps://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/16881-
dc.description.abstractEpidemiology studies the spread and impact of infectious diseases within defined populations, focusing on factors such as transmission rate, infectious agents, infectious periods, and susceptibility. Computational epidemiology simulates these factors using basic compartmental models like Susceptible-Infected-Recovered (SIR), Susceptible-Exposed-Infected (SEI), and Susceptible-Exposed-Infected-Recovered (SEIR). However, these models inadequately address mortality and fatality rates. To enhance the accuracy of epidemic transmission models, we propose an expanded SEIR model by introducing a new compartment, denoted as X, representing the deceased population. This new model, Susceptible-Exposed-Infected-Recovered-Deceased (SEIRX), incorporates fatality and mortality rates, providing a more comprehensive understanding of epidemic dynamics. The SEIRX model demonstrates superior accuracy in inferring and forecasting epidemic transmission compared to existing models, offering a complete and detailed approach to studying infectious disease outbreaks. © 2024; Los autores.en_US
dc.language.isoenen_US
dc.publisherSalud, Ciencia y Tecnologia - Serie de Conferenciasen_US
dc.publisherEditorial Salud, Ciencia y Tecnologiaen_US
dc.subjectComputational Epidemiologyen_US
dc.subjectExposeden_US
dc.subjectForecasting Of Epidemicsen_US
dc.subjectInfecteden_US
dc.subjectRecovered (Seirx)en_US
dc.subjectSusceptibleen_US
dc.subjectSusceptible-Exposed-Infecteden_US
dc.subjectWorld Health Organizationen_US
dc.titleA Computational Model of Epidemics Using Seirx Model; [Un Modelo Computacional De Epidemias Utilizando El Modelo Seirx]en_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
File SizeFormat 
SCTConf_2024_1107_1149.pdf443.1 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.