Please use this identifier to cite or link to this item: https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/2064
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaji, Alen Charuvila-
dc.contributor.authorRamalakshmi, K-
dc.contributor.authorSenbagavalli, M-
dc.contributor.authorGunasekaran, Hemalatha-
dc.contributor.authorEbenezer, Shamila-
dc.date.accessioned2023-11-20T12:47:52Z-
dc.date.available2023-11-20T12:47:52Z-
dc.date.issued2022-01-
dc.identifier.citationVol. 8, No. 1; pp. 441-446en_US
dc.identifier.issn2395-5295-
dc.identifier.issn2395-5287-
dc.identifier.urihttps://thegrenze.com/index.php?display=page&view=journalabstract&absid=1061&id=8-
dc.identifier.urihttp://gnanaganga.inflibnet.ac.in:8080/jspui/handle/123456789/2064-
dc.description.abstractThe deaf-mute community utilises sign language for interacting among themselves and others. The introduction of standard sign language has made their lives much easier. This paper proposes an effective hand-sign recognition method using a deep learning technique and is based on YOLOv5, which is a real-time object detection algorithm which detects a hand sign and outputs the corresponding text. The proposed model utilises various sub-models namely, Cross Stage Partial Network (CSPNet), Path Aggregation Network (PANet), Dense Prediction. This model can be conveniently deployed into an android application with a user-friendly interface.en_US
dc.language.isoenen_US
dc.publisherGrenze International Journal of Engineering and Technologyen_US
dc.subjectYOLOv5en_US
dc.subjectClassificationen_US
dc.subjectArrhythmiaen_US
dc.subjectDeep learningen_US
dc.subjectConvolution deep learningen_US
dc.subjectWebservicesen_US
dc.titleHand Sign Recognition using YOLOV5en_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.