Please use this identifier to cite or link to this item:
https://gnanaganga.inflibnet.ac.in:8443/jspui/handle/123456789/6375
Title: | Polynomials Associated with the Fragments of Coset Diagrams |
Authors: | Abdul Razaq Qaiser Mushtaq |
Issue Date: | 2019 |
Publisher: | Journal of the Ramanujan Mathematical Society |
Abstract: | The coset diagrams for PS L (2, Z) are composed of fragments, and the fragments are further composed of circuits. Mushtaq has found that, the condition for the existence of a fragment in coset diagram is a polynomial f in Z[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree, there are finite number of such polynomials. In this paper, we consider a family n of fragments such that each fragment .in n contains one vertex fixed by a pair of words (xy)q1 (xy-1 )q2 , (xy-1 y1 (xyY2 , where s1, s2, q1, q2 E z+, and prove Higman 's conjecture for the polynomials obtained from n. At the end, we answer the question; for a fixed degree n, how many polynomials have evolved from . |
URI: | http://gnanaganga.inflibnet.ac.in:8080/jspui/handle/123456789/6375 |
Appears in Collections: | Articles to be qced |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Polynomials associated with the fragments of coset diagrams.pdf Restricted Access | 484.23 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.